These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33782514)

  • 1. Thermal expansion coefficient of few-layer MoS
    Lin Z; Liu W; Tian S; Zhu K; Huang Y; Yang Y
    Sci Rep; 2021 Mar; 11(1):7037. PubMed ID: 33782514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.
    Late DJ; Shirodkar SN; Waghmare UV; Dravid VP; Rao CN
    Chemphyschem; 2014 Jun; 15(8):1592-8. PubMed ID: 24692405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Associated Interface Influence on the Black Phosphorus Nanoflakes.
    Huang P; Guo D; Xie G
    ACS Appl Mater Interfaces; 2017 May; 9(18):15219-15224. PubMed ID: 28445634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Expansion Coefficient of Monolayer Molybdenum Disulfide Using Micro-Raman Spectroscopy.
    Zhang L; Lu Z; Song Y; Zhao L; Bhatia B; Bagnall KR; Wang EN
    Nano Lett; 2019 Jul; 19(7):4745-4751. PubMed ID: 31184905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy.
    Yan R; Simpson JR; Bertolazzi S; Brivio J; Watson M; Wu X; Kis A; Luo T; Hight Walker AR; Xing HG
    ACS Nano; 2014 Jan; 8(1):986-93. PubMed ID: 24377295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the thermal conductivities of suspended MoS
    Wang R; Wang T; Zobeiri H; Yuan P; Deng C; Yue Y; Xu S; Wang X
    Nanoscale; 2018 Dec; 10(48):23087-23102. PubMed ID: 30511715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress Effects on Temperature-Dependent In-Plane Raman Modes of Supported Monolayer Graphene Induced by Thermal Annealing.
    Wei Y; Wei Z; Zheng X; Liu J; Chen Y; Su Y; Luo W; Peng G; Huang H; Cai W; Deng C; Zhang X; Qin S
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Induced Particle Adsorption on Atomically Thin MoS2.
    Tran Khac BC; Jeon KJ; Choi ST; Kim YS; DelRio FW; Chung KH
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2974-84. PubMed ID: 26795729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique.
    Zhang X; Sun D; Li Y; Lee GH; Cui X; Chenet D; You Y; Heinz TF; Hone JC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25923-9. PubMed ID: 26517143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers.
    Najmaei S; Ajayan PM; Lou J
    Nanoscale; 2013 Oct; 5(20):9758-63. PubMed ID: 23963480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-Phonon Interaction in Organic/2D-Transition Metal Dichalcogenide Heterojunctions: A Temperature-Dependent Raman Spectroscopic Study.
    Sarkar AS; Pal SK
    ACS Omega; 2017 Aug; 2(8):4333-4340. PubMed ID: 31457725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent thermal properties of supported MoS2 monolayers.
    Taube A; Judek J; Łapińska A; Zdrojek M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5061-5. PubMed ID: 25706435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Dependent Raman Spectroscopy of Titanium Trisulfide (TiS3) Nanoribbons and Nanosheets.
    Pawbake AS; Island JO; Flores E; Ares JR; Sanchez C; Ferrer IJ; Jadkar SR; van der Zant HS; Castellanos-Gomez A; Late DJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24185-90. PubMed ID: 26467202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer thinning of MoS
    Tran-Khac BC; White RM; DelRio FW; Chung KH
    Nanotechnology; 2019 Jul; 30(27):275302. PubMed ID: 30893654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS
    Aiyiti A; Bai X; Wu J; Xu X; Li B
    Sci Bull (Beijing); 2018 Apr; 63(7):452-458. PubMed ID: 36658941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Properties of Suspended MoS
    Chaste J; Missaoui A; Huang S; Henck H; Ben Aziza Z; Ferlazzo L; Naylor C; Balan A; Johnson ATC; Braive R; Ouerghi A
    ACS Nano; 2018 Apr; 12(4):3235-3242. PubMed ID: 29553713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions.
    Shaina PR; George L; Yadav V; Jaiswal M
    J Phys Condens Matter; 2016 Mar; 28(8):085301. PubMed ID: 26823443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon and Exciton Properties between WS
    Yang MM; Leng YC; Liu YL; Liu Y; Zhao YN; Tan L; Hu XW; Lian RQ; Liu XL; Cong RD; Sun SS; Li XL
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):19012-19022. PubMed ID: 35421305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate modified thermal stability of mono- and few-layer MoS
    Wang X; Fan W; Fan Z; Dai W; Zhu K; Hong S; Sun Y; Wu J; Liu K
    Nanoscale; 2018 Feb; 10(7):3540-3546. PubMed ID: 29410997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.