BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3378257)

  • 1. A possible contribution by glial cells to neuronal energy production: enzyme-histochemical studies in the developing rat cerebellum.
    Katoh-Semba R; Keino H; Kashiwamata S
    Cell Tissue Res; 1988 Apr; 252(1):133-9. PubMed ID: 3378257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histochemical studies on the morphology of the Golgi apparatus and on the distribution of some enzymes concerned with carbodydrate metabolism in the rat cerebellum.
    Iijima K
    Acta Histochem; 1977; 58(1):163-86. PubMed ID: 404826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal development. II. Glucose-6-phosphate dehydrogenase and beta-hydroxybutyrate dehydrogenase.
    Bilger A; Nehlig A
    Int J Dev Neurosci; 1992 Apr; 10(2):143-52. PubMed ID: 1632274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A histochemical study of the distribution of beta-hydroxybutyrate dehydrogenase in developing rat cerebellum.
    Gesink DS; Wilson JE
    J Neurochem; 1985 Apr; 44(4):1308-11. PubMed ID: 3973614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cerebro-protective agents on enzyme activities of rat primary glial cultures and rat cerebral cortex.
    Bielenberg GW; Hayn C; Krieglstein J
    Biochem Pharmacol; 1986 Aug; 35(16):2693-702. PubMed ID: 2943286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histochemical studies on the distribution of some enzymes concerned with carbohydrate metabolism in the locus ceruleus, nucleus tractus mesencephalicus n. trigemini, nucleus dorsalis n. vagi and nucleus n. hypoglossi of the rat.
    Iijima K; Imai K
    Acta Histochem; 1975; 52(1):145-63. PubMed ID: 809976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme activities in regions of the hypothalamus.
    Martin RJ; Bird MI; Saggerson ED; Munday LA; Clark JB
    J Neurochem; 1987 Mar; 48(3):738-40. PubMed ID: 3806103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurochemical maturation of the rabbit cerebellum.
    Lossi L; Ghidella S; Marroni P; Merighi A
    J Anat; 1995 Dec; 187 ( Pt 3)(Pt 3):709-22. PubMed ID: 8586569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella.
    Fisher M
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4414-8. PubMed ID: 6379643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the AMF/neuroleukin receptor in developing and adult brain cerebellum.
    Leclerc N; Vallée A; Nabi IR
    J Neurosci Res; 2000 Jun; 60(5):602-12. PubMed ID: 10820431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications in energy metabolism during the development of chick glial cells and neurons in culture.
    Tholey G; Ledig M; Mandel P
    Neurochem Res; 1982 Jan; 7(1):27-36. PubMed ID: 7070578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme reaction rate studies in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus.
    Straatsburg IH; De Graaf F; Van Noorden CJ; Van Raamsdonk W
    Histochem J; 1989; 21(9-10):609-17. PubMed ID: 2512271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-metabolizing enzymes in brain regions of adult and aging rats.
    Leong SF; Lai JC; Lim L; Clark JB
    J Neurochem; 1981 Dec; 37(6):1548-56. PubMed ID: 6460851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Histochemical studies of explant cultures from cerebral cortex of newborn rats].
    Goworek K; Meyer U; Lindner G
    Z Mikrosk Anat Forsch; 1973; 87(3):423-43. PubMed ID: 4149995
    [No Abstract]   [Full Text] [Related]  

  • 15. Relative levels of hexokinase in isolated neuronal, astrocytic, and oligodendroglial fractions from rat brain.
    Snyder CD; Wilson JE
    J Neurochem; 1983 Apr; 40(4):1178-81. PubMed ID: 6834050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of mitochondrial energy metabolism in rat brain.
    Land JM; Booth RF; Berger R; Clark JB
    Biochem J; 1977 May; 164(2):339-48. PubMed ID: 880241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells.
    Yamada K; Watanabe M
    Anat Sci Int; 2002 Jun; 77(2):94-108. PubMed ID: 12418089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical patterns of succinic semialdehyde dehydrogenase activity within the Purkinje cell population during rat cerebellar histogenesis.
    Bernocchi G; Scherini E
    Acta Histochem; 1983; 72(1):1-14. PubMed ID: 6410653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.
    Jakovcevski I; Siering J; Hargus G; Karl N; Hoelters L; Djogo N; Yin S; Zecevic N; Schachner M; Irintchev A
    J Comp Neurol; 2009 Apr; 513(5):496-510. PubMed ID: 19226508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species.
    Booth RF; Patel TB; Clark JB
    J Neurochem; 1980 Jan; 34(1):17-25. PubMed ID: 6108983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.