These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33782612)

  • 21. Detecting statistical interaction between somatic mutational events and germline variation from next-generation sequence data.
    Hu H; Huff CD
    Pac Symp Biocomput; 2014; ():51-62. PubMed ID: 24297533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RDscan: A New Method for Improving Germline and Somatic Variant Calling Based on Read Depth Distribution.
    Lee S; Hong S; Woo J; Lee JH; Kim K; Kim L; Park K; Jung J
    J Comput Biol; 2022 Sep; 29(9):987-1000. PubMed ID: 35749140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variant calling in low-coverage whole genome sequencing of a Native American population sample.
    Bizon C; Spiegel M; Chasse SA; Gizer IR; Li Y; Malc EP; Mieczkowski PA; Sailsbery JK; Wang X; Ehlers CL; Wilhelmsen KC
    BMC Genomics; 2014 Jan; 15():85. PubMed ID: 24479562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HapTree: a novel Bayesian framework for single individual polyplotyping using NGS data.
    Berger E; Yorukoglu D; Peng J; Berger B
    PLoS Comput Biol; 2014 Mar; 10(3):e1003502. PubMed ID: 24675685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dindel: accurate indel calls from short-read data.
    Albers CA; Lunter G; MacArthur DG; McVean G; Ouwehand WH; Durbin R
    Genome Res; 2011 Jun; 21(6):961-73. PubMed ID: 20980555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calling known variants and identifying new variants while rapidly aligning sequence data.
    VanRaden PM; Bickhart DM; O'Connell JR
    J Dairy Sci; 2019 Apr; 102(4):3216-3229. PubMed ID: 30772032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HapMuC: somatic mutation calling using heterozygous germ line variants near candidate mutations.
    Usuyama N; Shiraishi Y; Sato Y; Kume H; Homma Y; Ogawa S; Miyano S; Imoto S
    Bioinformatics; 2014 Dec; 30(23):3302-9. PubMed ID: 25123903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calling small variants using universality with Bayes-factor-adjusted odds ratios.
    Zhao X; Hu AC; Wang S; Wang X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Somatic and Germline Variant Calling from Next-Generation Sequencing Data.
    Chang TC; Xu K; Cheng Z; Wu G
    Adv Exp Med Biol; 2022; 1361():37-54. PubMed ID: 35230682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications.
    Rimmer A; Phan H; Mathieson I; Iqbal Z; Twigg SRF; ; Wilkie AOM; McVean G; Lunter G
    Nat Genet; 2014 Aug; 46(8):912-918. PubMed ID: 25017105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold.
    Menelaou A; Marchini J
    Bioinformatics; 2013 Jan; 29(1):84-91. PubMed ID: 23093610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmarking variant callers in next-generation and third-generation sequencing analysis.
    Pei S; Liu T; Ren X; Li W; Chen C; Xie Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32698196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals.
    Cheng AY; Teo YY; Ong RT
    Bioinformatics; 2014 Jun; 30(12):1707-13. PubMed ID: 24558117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HapCUT2: A Method for Phasing Genomes Using Experimental Sequence Data.
    Bansal V
    Methods Mol Biol; 2023; 2590():139-147. PubMed ID: 36335497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy and reproducibility of somatic point mutation calling in clinical-type targeted sequencing data.
    Karimnezhad A; Palidwor GA; Thavorn K; Stewart DJ; Campbell PA; Lo B; Perkins TJ
    BMC Med Genomics; 2020 Oct; 13(1):156. PubMed ID: 33059707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model.
    Luo R; Schatz MC; Salzberg SL
    Gigascience; 2017 Jul; 6(7):1-4. PubMed ID: 28637275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haplotype phasing by multi-assembly of shared haplotypes: phase-dependent interactions between rare variants.
    Halldórsson BV; Aguiar D; Istrail S
    Pac Symp Biocomput; 2011; ():88-99. PubMed ID: 21121036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo inference of stratification and local admixture in sequencing studies.
    Zhang Y
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S17. PubMed ID: 23734678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of haplotype callers for next-generation sequencing of viruses.
    Eliseev A; Gibson KM; Avdeyev P; Novik D; Bendall ML; Pérez-Losada M; Alexeev N; Crandall KA
    Infect Genet Evol; 2020 Aug; 82():104277. PubMed ID: 32151775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.