BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33782728)

  • 1. Structure, gating and interactions of the voltage-dependent anion channel.
    Najbauer EE; Becker S; Giller K; Zweckstetter M; Lange A; Steinem C; de Groot BL; Griesinger C; Andreas LB
    Eur Biophys J; 2021 Mar; 50(2):159-172. PubMed ID: 33782728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges.
    Teijido O; Rappaport SM; Chamberlin A; Noskov SY; Aguilella VM; Rostovtseva TK; Bezrukov SM
    J Biol Chem; 2014 Aug; 289(34):23670-82. PubMed ID: 24962576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC).
    Noskov SY; Rostovtseva TK; Chamberlin AC; Teijido O; Jiang W; Bezrukov SM
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1778-90. PubMed ID: 26940625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating.
    Ngo VA; Queralt-Martín M; Khan F; Bergdoll L; Abramson J; Bezrukov SM; Rostovtseva TK; Hoogerheide DP; Noskov SY
    J Am Chem Soc; 2022 Aug; 144(32):14564-14577. PubMed ID: 35925797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New findings concerning vertebrate porin II--on the relevance of glycine motifs of type-1 VDAC.
    Thinnes FP
    Mol Genet Metab; 2013 Apr; 108(4):212-24. PubMed ID: 23419876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer.
    Najbauer EE; Tekwani Movellan K; Giller K; Benz R; Becker S; Griesinger C; Andreas LB
    J Am Chem Soc; 2022 Feb; 144(7):2953-2967. PubMed ID: 35164499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary selection of a 19-stranded mitochondrial β-barrel scaffold bears structural and functional significance.
    Srivastava SR; Mahalakshmi R
    J Biol Chem; 2020 Oct; 295(43):14653-14665. PubMed ID: 32817169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Single-Channel Conductance of Voltage-Dependent Anion Channel by Mercuric Chloride in a Planar Lipid Bilayer.
    Malik C; Ghosh S
    J Membr Biol; 2020 Aug; 253(4):357-371. PubMed ID: 32748041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magic angle spinning nuclear magnetic resonance characterization of voltage-dependent anion channel gating in two-dimensional lipid crystalline bilayers.
    Eddy MT; Andreas L; Teijido O; Su Y; Clark L; Noskov SY; Wagner G; Rostovtseva TK; Griffin RG
    Biochemistry; 2015 Feb; 54(4):994-1005. PubMed ID: 25545271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes.
    Rostovtseva TK; Kazemi N; Weinrich M; Bezrukov SM
    J Biol Chem; 2006 Dec; 281(49):37496-506. PubMed ID: 16990283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations.
    Van Liefferinge F; Krammer EM; Sengupta D; Prévost M
    Chem Phys Lipids; 2019 May; 220():66-76. PubMed ID: 30448398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VDAC structure, selectivity, and dynamics.
    Colombini M
    Biochim Biophys Acta; 2012 Jun; 1818(6):1457-65. PubMed ID: 22240010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductance hysteresis in the voltage-dependent anion channel.
    Rappaport SM; Teijido O; Hoogerheide DP; Rostovtseva TK; Berezhkovskii AM; Bezrukov SM
    Eur Biophys J; 2015 Sep; 44(6):465-472. PubMed ID: 26094068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury?
    Das S; Steenbergen C; Murphy E
    Biochim Biophys Acta; 2012 Jun; 1818(6):1451-6. PubMed ID: 22100866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport.
    Rosencrans WM; Aguilella VM; Rostovtseva TK; Bezrukov SM
    Cell Calcium; 2021 May; 95():102355. PubMed ID: 33578201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease.
    Varughese JT; Buchanan SK; Pitt AS
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.
    Guardiani C; Scorciapino MA; Amodeo GF; Grdadolnik J; Pappalardo G; De Pinto V; Ceccarelli M; Casu M
    Biochemistry; 2015 Sep; 54(36):5646-56. PubMed ID: 26303511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-activated complexation of α-synuclein with three diverse β-barrel channels: VDAC, MspA, and α-hemolysin.
    Hoogerheide DP; Gurnev PA; Rostovtseva TK; Bezrukov SM
    Proteomics; 2022 Mar; 22(5-6):e2100060. PubMed ID: 34813679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 3D structures of VDAC represent a native conformation.
    Hiller S; Abramson J; Mannella C; Wagner G; Zeth K
    Trends Biochem Sci; 2010 Sep; 35(9):514-21. PubMed ID: 20708406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of plant mitochondrial VDAC by phytosterols.
    Mlayeh L; Chatkaew S; Léonetti M; Homblé F
    Biophys J; 2010 Oct; 99(7):2097-106. PubMed ID: 20923643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.