These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33782743)

  • 1. Automated optimization of double heater convective polymerase chain reaction devices based on CFD simulation database and artificial neural network model.
    Hong SH; Shu JI; Wang Y; Baysal O
    Biomed Microdevices; 2021 Mar; 23(2):20. PubMed ID: 33782743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-genetic optimization of temperature control for a continuous flow polymerase chain reaction microdevice.
    Lee HW; Arunasalam P; Laratta WP; Seetharamu KN; Azid IA
    J Biomech Eng; 2007 Aug; 129(4):540-7. PubMed ID: 17655475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks.
    Li H; Shatarah M
    Water Res; 2024 Mar; 251():121123. PubMed ID: 38241806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer.
    Hsieh YF; Lee DS; Chen PH; Liao SK; Yeh SH; Chen PJ; Yang AS
    Sens Actuators B Chem; 2013 Jul; 183():434-440. PubMed ID: 32288243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models.
    Su B; Zhang JM; Zou H; Ghista D; Le TT; Chin C
    Comput Biol Med; 2020 Nov; 126():104038. PubMed ID: 33039809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics.
    Li H; Sansalone J
    Water Res; 2022 Jul; 220():118685. PubMed ID: 35671685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of fluid flow in membrane chromatography devices using computational fluid dynamic simulations.
    Roshankhah R; Pelton R; Ghosh R
    J Chromatogr A; 2023 Jun; 1699():464030. PubMed ID: 37137192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks.
    Taebi A; Vu CT; Roncali E
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4974-4977. PubMed ID: 33019103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of triangular side orifice using multi-objective optimization NSGA-II.
    Danish M; Ayaz M
    Water Sci Technol; 2023 Oct; 88(8):2136-2159. PubMed ID: 37906463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD simulations for paper-based DNA amplification reaction (LAMP) of Mycobacterium tuberculosis-point-of-care diagnostic perspective.
    Das D; Panigrahi PK
    Med Biol Eng Comput; 2020 Feb; 58(2):271-289. PubMed ID: 31845080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of artificial intelligence techniques for increasing the prediction performance of important parameters and their optimization in membrane processes: A systematic review.
    Yuan S; Ajam H; Sinnah ZAB; Altalbawy FMA; Abdul Ameer SA; Husain A; Al Mashhadani ZI; Alkhayyat A; Alsalamy A; Zubaid RA; Cao Y
    Ecotoxicol Environ Saf; 2023 Jul; 260():115066. PubMed ID: 37262969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Computational Modeling can Help to Predict Gas Transfer in Artificial Lungs Early in the Design Process.
    Kaesler A; Rosen M; Schlanstein PC; Wagner G; Groß-Hardt S; Schmitz-Rode T; Steinseifer U; Arens J
    ASAIO J; 2020 Jun; 66(6):683-690. PubMed ID: 31789656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump.
    Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N
    Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational fluid dynamics simulation framework for ventricular catheter design optimization.
    Weisenberg SH; TerMaath SC; Barbier CN; Hill JC; Killeffer JA
    J Neurosurg; 2018 Oct; 129(4):1067-1077. PubMed ID: 29125413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust optimization of a novel ultraviolet (UV) photoreactor for water disinfection: A neural network approach.
    Seyedin M; Hassanpour A; Jalali A; Raisee M
    Chemosphere; 2024 Aug; 362():142788. PubMed ID: 38977250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography.
    Huang R; Nedanoski A; Fletcher DF; Singh N; Schmid J; Young PM; Stow N; Bi L; Traini D; Wong E; Phillips CL; Grunstein RR; Kim J
    Comput Biol Med; 2019 Dec; 115():103505. PubMed ID: 31704374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
    Yu H; Janiga G; Thévenin D
    Artif Organs; 2016 Apr; 40(4):341-52. PubMed ID: 26526039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.