BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33782822)

  • 1. Ecotoxicity of triclosan in soil: an approach using different species.
    Ramires PF; Tavella RA; Escarrone AL; Volcão LM; Honscha LC; de Lima Brum R; da Silva AB; da Silva Júnior FMR
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):41233-41241. PubMed ID: 33782822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioassays for the evaluation of reclaimed opencast coal mining areas.
    Honscha LC; Campos AS; Tavella RA; Ramires PF; Volcão LM; Halicki PCB; Pech TM; Bernardi E; Ramos DF; Niemeyer JC; Baisch PRM; Baisch ALM; da Silva Júnior FMR
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):26664-26676. PubMed ID: 33495952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and sublethal effects of triclosan and its transformation product methyl-triclosan in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil.
    Chevillot F; Guyot M; Desrosiers M; Cadoret N; Veilleux É; Cabana H; Bellenger JP
    Environ Toxicol Chem; 2018 Jul; 37(7):1940-1948. PubMed ID: 29667748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrestrial ecotoxicological effects of the antimicrobial agent triclosan.
    Liu F; Ying GG; Yang LH; Zhou QX
    Ecotoxicol Environ Saf; 2009 Jan; 72(1):86-92. PubMed ID: 18706695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.
    Hubálek T; Vosáhlová S; Matejů V; Kovácová N; Novotný C
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):1-7. PubMed ID: 17106791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds.
    An YJ
    Environ Pollut; 2005 Mar; 134(2):181-6. PubMed ID: 15589644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a small scale-terrestrial model ecosystem (STME) for assessment of ecotoxicity of bio-based plastics.
    Liwarska-Bizukojc E
    Sci Total Environ; 2022 Jul; 828():154353. PubMed ID: 35259373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of elevated temperature and decreased soil moisture content on triclosan ecotoxicity to earthworm E. fetida.
    Miškelytė D; Žaltauskaitė J
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):51018-51029. PubMed ID: 36807863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ecological risk assessment for triclosan in the terrestrial environment.
    Reiss R; Lewis G; Griffin J
    Environ Toxicol Chem; 2009 Jul; 28(7):1546-56. PubMed ID: 19228078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation, transformation and accumulation of triclosan in soil-earthworm system and effects of biosolids application.
    Chen X; Ma X; Pan Y; Ji R; Gu X; Luo S; Bao L; Gu X
    Sci Total Environ; 2020 Apr; 712():136563. PubMed ID: 31945521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lethal and sub-lethal effects of triclosan toxicity to the earthworm Eisenia fetida assessed through GC-MS metabolomics.
    Gillis JD; Price GW; Prasher S
    J Hazard Mater; 2017 Feb; 323(Pt A):203-211. PubMed ID: 27468629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and bioaccumulation of biosolids-borne triclosan in terrestrial organisms.
    Pannu MW; O'Connor GA; Toor GS
    Environ Toxicol Chem; 2012 Mar; 31(3):646-53. PubMed ID: 22180230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic risk assessment of firefighting water additives to terrestrial organisms.
    Graetz S; Martin W; Washuck N; Anderson J; Sibley PK; Prosser RS
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20883-20893. PubMed ID: 33405173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity of siloxane D5 in soil.
    Velicogna J; Ritchie E; Princz J; Lessard ME; Scroggins R
    Chemosphere; 2012 Mar; 87(1):77-83. PubMed ID: 22197313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological assessment of Fluazuron: effects on Folsomia candida and Eisenia andrei.
    Alves PRL; Bandeira FO; Giraldi M; Presotto R; Segat JC; Cardoso EJBN; Baretta D
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5842-5850. PubMed ID: 30613876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species.
    Bouguerra S; Gavina A; Ksibi M; Rasteiro Mda G; Rocha-Santos T; Pereira R
    Ecotoxicol Environ Saf; 2016 Jul; 129():291-301. PubMed ID: 27060256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity bioassays for ecological risk assessment in arid and semiarid ecosystems.
    Markwiese JT; Ryti RT; Hooten MM; Michael DI; Hlohowskyj I
    Rev Environ Contam Toxicol; 2001; 168():43-98. PubMed ID: 12882227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and life cycle effects of triclosan chronic toxicity to earthworm Eisenia fetida.
    Zaltauskaite J; Miskelyte D
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18938-18946. PubMed ID: 29717430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.
    Chae Y; Kim D; An YJ
    Ecotoxicol Environ Saf; 2018 Apr; 151():21-27. PubMed ID: 29304414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant assays and avoidance tests with collembola and earthworms demonstrate rehabilitation success in bauxite residue.
    Finngean G; O'Grady A; Courtney R
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2157-2166. PubMed ID: 29116530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.