These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33783010)

  • 1. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review.
    Majewska AM; Mostek A
    Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox proteomics: identification of oxidatively modified proteins.
    Ghezzi P; Bonetto V
    Proteomics; 2003 Jul; 3(7):1145-53. PubMed ID: 12872215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins.
    Mostek A; Janta A; Majewska A; Ciereszko A
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein redox modification as a cellular defense mechanism against tissue ischemic injury.
    Yan LJ
    Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological Impact of Redox Post-Translational Modifications.
    Chahla C; Kovacic H; Ferhat L; Leloup L
    Antioxid Redox Signal; 2024 Jul; 41(1-3):152-180. PubMed ID: 38504589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
    Bykova NV; Rampitsch C
    Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global approaches for protein thiol redox state detection.
    Knoke LR; Leichert LI
    Curr Opin Chem Biol; 2023 Dec; 77():102390. PubMed ID: 37797572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.