These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33783108)
1. Core-Multishell-Structured Digital-Gradient Cathode Materials with Enhanced Mechanical and Electrochemical Durability. Shin Y; Maeng S; Chung Y; Krumdick GK; Min S Small; 2021 May; 17(19):e2100040. PubMed ID: 33783108 [TBL] [Abstract][Full Text] [Related]
2. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries. Liao JY; Oh SM; Manthiram A ACS Appl Mater Interfaces; 2016 Sep; 8(37):24543-9. PubMed ID: 27571031 [TBL] [Abstract][Full Text] [Related]
3. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials. Sun Y; Zhang Z; Li H; Yang T; Zhang H; Shi X; Song D; Zhang L Dalton Trans; 2018 Nov; 47(46):16651-16659. PubMed ID: 30426127 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. Chu M; Huang Z; Zhang T; Wang R; Shao T; Wang C; Zhu W; He L; Chen J; Zhao W; Xiao Y ACS Appl Mater Interfaces; 2021 May; 13(17):19950-19958. PubMed ID: 33891814 [TBL] [Abstract][Full Text] [Related]
5. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. Shi JL; Qi R; Zhang XD; Wang PF; Fu WG; Yin YX; Xu J; Wan LJ; Guo YG ACS Appl Mater Interfaces; 2017 Dec; 9(49):42829-42835. PubMed ID: 29148695 [TBL] [Abstract][Full Text] [Related]
6. Surface Stabilization of Ni-Rich Layered Cathode Materials via Surface Engineering with LiTaO Lee HB; Dinh Hoang T; Byeon YS; Jung H; Moon J; Park MS ACS Appl Mater Interfaces; 2022 Jan; 14(2):2731-2741. PubMed ID: 34985861 [TBL] [Abstract][Full Text] [Related]
7. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Liu T; Yu L; Lu J; Zhou T; Huang X; Cai Z; Dai A; Gim J; Ren Y; Xiao X; Holt MV; Chu YS; Arslan I; Wen J; Amine K Nat Commun; 2021 Oct; 12(1):6024. PubMed ID: 34654811 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. Yang W; Xiang W; Chen YX; Wu ZG; Hua WB; Qiu L; He FR; Zhang J; Zhong BH; Guo XD ACS Appl Mater Interfaces; 2020 Mar; 12(9):10240-10251. PubMed ID: 32027108 [TBL] [Abstract][Full Text] [Related]
9. Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries. Cho W; Lim YJ; Lee SM; Kim JH; Song JH; Yu JS; Kim YJ; Park MS ACS Appl Mater Interfaces; 2018 Nov; 10(45):38915-38921. PubMed ID: 30335357 [TBL] [Abstract][Full Text] [Related]
10. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials. Kozawa T; Naito M Sci Technol Adv Mater; 2015 Feb; 16(1):015006. PubMed ID: 27877756 [TBL] [Abstract][Full Text] [Related]
11. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials. Song D; Hou P; Wang X; Shi X; Zhang L ACS Appl Mater Interfaces; 2015 Jun; 7(23):12864-72. PubMed ID: 26017733 [TBL] [Abstract][Full Text] [Related]
12. In situ synthesis of a nickel concentration gradient structure of Ni-rich LiNi Wu K; Wang J; Li Q; Yang Y; Deng X; Dang R; Wu M; Wu Z; Xiao X; Yu X Nanoscale; 2020 May; 12(20):11182-11191. PubMed ID: 32406453 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Properties of Al Liu YC; Wu NL; Liu WR J Nanosci Nanotechnol; 2018 Jan; 18(1):68-74. PubMed ID: 29768813 [TBL] [Abstract][Full Text] [Related]
14. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
15. Surface Pinning of Mn by Oxidation State Control for the Synthesis of Cobalt-Free, Ni-Rich, Core/Shell Structured Cathode Materials. Shim J; Kim YJ; Bang JH Small; 2024 Aug; 20(31):e2400518. PubMed ID: 38747079 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Surface Chemical and Structural Stability of Ni-Rich Cathode Materials by Synchronous Lithium-Ion Conductor Coating for Lithium-Ion Batteries. Qian R; Liu Y; Cheng T; Li P; Chen R; Lyu Y; Guo B ACS Appl Mater Interfaces; 2020 Mar; 12(12):13813-13823. PubMed ID: 32109042 [TBL] [Abstract][Full Text] [Related]
18. Bifunctional Surface Coating of LiNbO Kim JH; Kim H; Choi W; Park MS ACS Appl Mater Interfaces; 2020 Aug; 12(31):35098-35104. PubMed ID: 32648732 [TBL] [Abstract][Full Text] [Related]
19. Yttrium Surface Gradient Doping for Enhancing Structure and Thermal Stability of High-Ni Layered Oxide as Cathode for Li-Ion Batteries. Wang YY; Gao MY; Liu S; Li GR; Gao XP ACS Appl Mater Interfaces; 2021 Feb; 13(6):7343-7354. PubMed ID: 33554597 [TBL] [Abstract][Full Text] [Related]
20. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. Noh HJ; Ju JW; Sun YK ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]