These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33783160)

  • 21. [Research progress in the third-generation genomic editing technology - CRISPR/Cas9].
    Zhou Y; Zong Y; Kong X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):713-6. PubMed ID: 27577230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise editing of plant genomes - Prospects and challenges.
    Satheesh V; Zhang H; Wang X; Lei M
    Semin Cell Dev Biol; 2019 Dec; 96():115-123. PubMed ID: 31002868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing.
    Randazzo P; Bennis NX; Daran JM; Daran-Lapujade P
    CRISPR J; 2021 Dec; 4(6):896-913. PubMed ID: 33900846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
    Pandey PK; Quilichini TD; Vaid N; Gao P; Xiang D; Datla R
    Semin Cell Dev Biol; 2019 Dec; 96():107-114. PubMed ID: 31022459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges.
    Xia Y; Li Y; Shen W; Yang H; Chen X
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing.
    Gallagher DN; Haber JE
    ACS Chem Biol; 2018 Feb; 13(2):397-405. PubMed ID: 29083855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplex Genome Engineering Methods for Yeast Cell Factory Development.
    Malcı K; Walls LE; Rios-Solis L
    Front Bioeng Biotechnol; 2020; 8():589468. PubMed ID: 33195154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas system in microbial hosts for terpenoid production.
    Chu LL
    Crit Rev Biotechnol; 2022 Nov; 42(7):1116-1133. PubMed ID: 35139706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple-to-use CRISPR-SpCas9/SaCas9/AsCas12a vector series for genome editing in Saccharomyces cerevisiae.
    Okada S; Doi G; Nakagawa S; Kusumoto E; Ito T
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34739076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects.
    Raschmanová H; Weninger A; Glieder A; Kovar K; Vogl T
    Biotechnol Adv; 2018; 36(3):641-665. PubMed ID: 29331410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of genome editing technologies to the study and treatment of hematological disease.
    Pellagatti A; Dolatshad H; Yip BH; Valletta S; Boultwood J
    Adv Biol Regul; 2016 Jan; 60():122-134. PubMed ID: 26433620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.