BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33783185)

  • 1. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More resource efficient recycling of copper and copper alloys by using X-ray fluorescence sorting systems: An investigation on the metallic fraction of mixed foundry residues.
    Kölking M; Flamme S; Heinrichs S; Schmalbein N; Jacob M
    Waste Manag Res; 2024 Apr; ():734242X241241601. PubMed ID: 38616533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of China's waste import policy on the scrap copper recovery pattern and environmental benefits.
    Tian X; Zheng J; Hu L; Liu Y; Wen H; Dong X
    Waste Manag; 2021 Nov; 135():287-297. PubMed ID: 34562811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Copper Circularity as a Result of Increased Material Efficiency in the U.S. Housing Stock.
    Wang T; Berrill P; Zimmerman JB; Rao ND; Min J; Hertwich EG
    Environ Sci Technol; 2022 Apr; 56(7):4565-4577. PubMed ID: 35302366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated capture of copper scrap and electrodeposition process to enrich and prepare pure palladium for recycling of spent catalyst from automobile.
    Zhang L; Song Q; Liu Y; Xu Z
    Waste Manag; 2020 May; 108():172-182. PubMed ID: 32360998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact of high-value gold scrap recycling.
    Fritz B; Aichele C; Schmidt M
    Int J Life Cycle Assess; 2020; 25(10):1930-1941. PubMed ID: 32863598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction to "Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit".
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2023 May; 57(19):7644. PubMed ID: 37128934
    [No Abstract]   [Full Text] [Related]  

  • 14. A solid-state electrolysis process for upcycling aluminium scrap.
    Lu X; Zhang Z; Hiraki T; Takeda O; Zhu H; Matsubae K; Nagasaka T
    Nature; 2022 Jun; 606(7914):511-515. PubMed ID: 35417651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Will Copper Contamination Constrain Future Global Steel Recycling?
    Daehn KE; Cabrera Serrenho A; Allwood JM
    Environ Sci Technol; 2017 Jun; 51(11):6599-6606. PubMed ID: 28445647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing China's potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and "Zero waste" policies.
    Dong D; Tukker A; Steubing B; van Oers L; Rechberger H; Alonso Aguilar-Hernandez G; Li H; Van der Voet E
    Waste Manag; 2022 May; 144():454-467. PubMed ID: 35462290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The future of copper in China--A perspective based on analysis of copper flows and stocks.
    Zhang L; Cai Z; Yang J; Yuan Z; Chen Y
    Sci Total Environ; 2015 Dec; 536():142-149. PubMed ID: 26204050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radioactive materials in recycled metals.
    Lubenau JO; Yusko JG
    Health Phys; 1995 Apr; 68(4):440-51. PubMed ID: 7883556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.