These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33783185)

  • 1. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More resource efficient recycling of copper and copper alloys by using X-ray fluorescence sorting systems: An investigation on the metallic fraction of mixed foundry residues.
    Kölking M; Flamme S; Heinrichs S; Schmalbein N; Jacob M
    Waste Manag Res; 2024 Sep; 42(9):814-822. PubMed ID: 38616533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of China's waste import policy on the scrap copper recovery pattern and environmental benefits.
    Tian X; Zheng J; Hu L; Liu Y; Wen H; Dong X
    Waste Manag; 2021 Nov; 135():287-297. PubMed ID: 34562811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Copper Circularity as a Result of Increased Material Efficiency in the U.S. Housing Stock.
    Wang T; Berrill P; Zimmerman JB; Rao ND; Min J; Hertwich EG
    Environ Sci Technol; 2022 Apr; 56(7):4565-4577. PubMed ID: 35302366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated capture of copper scrap and electrodeposition process to enrich and prepare pure palladium for recycling of spent catalyst from automobile.
    Zhang L; Song Q; Liu Y; Xu Z
    Waste Manag; 2020 May; 108():172-182. PubMed ID: 32360998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact of high-value gold scrap recycling.
    Fritz B; Aichele C; Schmidt M
    Int J Life Cycle Assess; 2020; 25(10):1930-1941. PubMed ID: 32863598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction to "Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit".
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2023 May; 57(19):7644. PubMed ID: 37128934
    [No Abstract]   [Full Text] [Related]  

  • 14. A solid-state electrolysis process for upcycling aluminium scrap.
    Lu X; Zhang Z; Hiraki T; Takeda O; Zhu H; Matsubae K; Nagasaka T
    Nature; 2022 Jun; 606(7914):511-515. PubMed ID: 35417651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Will Copper Contamination Constrain Future Global Steel Recycling?
    Daehn KE; Cabrera Serrenho A; Allwood JM
    Environ Sci Technol; 2017 Jun; 51(11):6599-6606. PubMed ID: 28445647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing China's potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and "Zero waste" policies.
    Dong D; Tukker A; Steubing B; van Oers L; Rechberger H; Alonso Aguilar-Hernandez G; Li H; Van der Voet E
    Waste Manag; 2022 May; 144():454-467. PubMed ID: 35462290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The future of copper in China--A perspective based on analysis of copper flows and stocks.
    Zhang L; Cai Z; Yang J; Yuan Z; Chen Y
    Sci Total Environ; 2015 Dec; 536():142-149. PubMed ID: 26204050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radioactive materials in recycled metals.
    Lubenau JO; Yusko JG
    Health Phys; 1995 Apr; 68(4):440-51. PubMed ID: 7883556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.