These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33783185)
61. Material flow analysis and recycling performance of an improved mechanical recycling process for post-consumer flexible plastics. Lase IS; Bashirgonbadi A; van Rhijn F; Dewulf J; Ragaert K; Delva L; Roosen M; Brandsma M; Langen M; De Meester S Waste Manag; 2022 Nov; 153():249-263. PubMed ID: 36126399 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste. Mastellone ML; Cremiato R; Zaccariello L; Lotito R Waste Manag; 2017 Jun; 64():3-11. PubMed ID: 28302523 [TBL] [Abstract][Full Text] [Related]
63. What to Do about Plastics? Lessons from a Study of United Kingdom Plastics Flows. Drewniok MP; Gao Y; Cullen JM; Cabrera Serrenho A Environ Sci Technol; 2023 Mar; 57(11):4513-4521. PubMed ID: 36877788 [TBL] [Abstract][Full Text] [Related]
64. Modular life cycle assessment of municipal solid waste management. Haupt M; Kägi T; Hellweg S Waste Manag; 2018 Sep; 79():815-827. PubMed ID: 29861114 [TBL] [Abstract][Full Text] [Related]
65. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials. Laila A; Nanko M; Takeda M Materials (Basel); 2014 Sep; 7(9):6304-6316. PubMed ID: 28788193 [TBL] [Abstract][Full Text] [Related]
66. Integrating High-Resolution Material Flow Data into the Environmental Assessment of Waste Management System Scenarios: The Case of Plastic Packaging in Austria. Van Eygen E; Laner D; Fellner J Environ Sci Technol; 2018 Oct; 52(19):10934-10945. PubMed ID: 30182722 [TBL] [Abstract][Full Text] [Related]
67. Forecasting model to assess the potential of secondary lead production from lead acid battery scrap. Machado Santos S; Cabral Neto J; Mendonça Silva M Environ Sci Pollut Res Int; 2019 Feb; 26(6):5782-5793. PubMed ID: 30613889 [TBL] [Abstract][Full Text] [Related]
68. Recovery of Non-Ferrous Metals from PCBs Scrap by Liquation from Lead. Wędrychowicz M; Piotrowicz A; Skrzekut T; Noga P; Bydalek A Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329538 [TBL] [Abstract][Full Text] [Related]
69. Propelling plastics into the circular economy - weeding out the toxics first. Leslie HA; Leonards PEG; Brandsma SH; de Boer J; Jonkers N Environ Int; 2016 Sep; 94():230-234. PubMed ID: 27262786 [TBL] [Abstract][Full Text] [Related]
70. In search of standards to support circularity in product policies: A systematic approach. Tecchio P; McAlister C; Mathieux F; Ardente F J Clean Prod; 2017 Dec; 168():1533-1546. PubMed ID: 29200663 [TBL] [Abstract][Full Text] [Related]
71. Photovoltaic panel waste assessment and embodied material flows in China, 2000-2050. Song G; Lu Y; Liu B; Duan H; Feng H; Liu G J Environ Manage; 2023 Jul; 338():117675. PubMed ID: 36989951 [TBL] [Abstract][Full Text] [Related]
72. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Simón D; Borreguero AM; de Lucas A; Rodríguez JF Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876 [TBL] [Abstract][Full Text] [Related]
73. Unearthing potentials for decarbonizing the U.S. aluminum cycle. Liu G; Bangs CE; Müller DB Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673 [TBL] [Abstract][Full Text] [Related]
74. Tracking the Product Origins of Waste for Treatment Using the WIO Data Developed by the Japanese Ministry of the Environment. Nakamura S Environ Sci Technol; 2020 Dec; 54(23):14862-14867. PubMed ID: 33205952 [TBL] [Abstract][Full Text] [Related]
75. Material Flows of Polyurethane in the United States. Liang C; Gracida-Alvarez UR; Gallant ET; Gillis PA; Marques YA; Abramo GP; Hawkins TR; Dunn JB Environ Sci Technol; 2021 Oct; 55(20):14215-14224. PubMed ID: 34618441 [TBL] [Abstract][Full Text] [Related]
76. Regional distribution and losses of end-of-life steel throughout multiple product life cycles-Insights from the global multiregional MaTrace model. Pauliuk S; Kondo Y; Nakamura S; Nakajima K Resour Conserv Recycl; 2017 Jan; 116():84-93. PubMed ID: 28216806 [TBL] [Abstract][Full Text] [Related]
77. Study on the Effect of Calcium Alloy on Arsenic Removal from Scrap-Based Steel Production. Yao H; Zhuang C; Li C; Xiang S; Li X; Yang G; Zhang Z Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109949 [TBL] [Abstract][Full Text] [Related]
78. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173 [TBL] [Abstract][Full Text] [Related]
79. High temperature investigations on optimising the recovery of copper from waste printed circuit boards. Cayumil R; Ikram-Ul-Haq M; Khanna R; Saini R; Mukherjee PS; Mishra BK; Sahajwalla V Waste Manag; 2018 Mar; 73():556-565. PubMed ID: 28089398 [TBL] [Abstract][Full Text] [Related]
80. Recovery of scrap iron metal value using biogenerated ferric iron. Ballor NR; Nesbitt CC; Lueking DR Biotechnol Bioeng; 2006 Apr; 93(6):1089-94. PubMed ID: 16440341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]