These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33784110)

  • 1. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H
    Liu J; Liu Y; Yang J; Zeng XC; He X
    J Phys Chem Lett; 2021 Apr; 12(13):3379-3386. PubMed ID: 33784110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.
    Chao W; Hsieh JT; Chang CH; Lin JJ
    Science; 2015 Feb; 347(6223):751-4. PubMed ID: 25569112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry.
    Su YT; Lin HY; Putikam R; Matsui H; Lin MC; Lee YP
    Nat Chem; 2014 Jun; 6(6):477-83. PubMed ID: 24848232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational studies of Criegee intermediate reactions with NH
    Chhantyal-Pun R; Shannon RJ; Tew DP; Caravan RL; Duchi M; Wong C; Ingham A; Feldman C; McGillen MR; Khan MAH; Antonov IO; Rotavera B; Ramasesha K; Osborn DL; Taatjes CA; Percival CJ; Shallcross DE; Orr-Ewing AJ
    Phys Chem Chem Phys; 2019 Jul; 21(26):14042-14052. PubMed ID: 30652179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of water vapor on the reaction of CH
    Chao W; Yin C; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2019 Oct; 21(40):22589-22597. PubMed ID: 31589227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the Reactions between the Criegee Intermediate CH
    Tadayon SV; Foreman ES; Murray C
    J Phys Chem A; 2018 Jan; 122(1):258-268. PubMed ID: 29286244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect.
    Wu YJ; Takahashi K; Lin JJ
    J Phys Chem A; 2023 Oct; 127(39):8059-8072. PubMed ID: 37734061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer.
    Smith MC; Chang CH; Chao W; Lin LC; Takahashi K; Boering KA; Lin JJ
    J Phys Chem Lett; 2015 Jul; 6(14):2708-13. PubMed ID: 26266852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.
    Kumar M; Zhong J; Francisco JS; Zeng XC
    Chem Sci; 2017 Aug; 8(8):5385-5391. PubMed ID: 28970917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent kinetics of the atmospheric reaction between CH
    Wang PB; Truhlar DG; Xia Y; Long B
    Phys Chem Chem Phys; 2022 Jun; 24(21):13066-13073. PubMed ID: 35583864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Apr; 140(13):134302. PubMed ID: 24712788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into Criegee Intermediate-Hydroperoxyl Radical Chemistry.
    Li B; Kumar M; Zhou C; Li L; Francisco JS
    J Am Chem Soc; 2022 Aug; 144(32):14740-14747. PubMed ID: 35921588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Reaction Mechanism of Criegee Intermediate CH
    Xu K; Wang W; Wei W; Feng W; Sun Q; Li P
    J Phys Chem A; 2017 Sep; 121(38):7236-7245. PubMed ID: 28853572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.
    Su YT; Huang YH; Witek HA; Lee YP
    Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments.
    Tang B; Li Z
    J Phys Chem A; 2020 Oct; 124(41):8585-8593. PubMed ID: 32946233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.