These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33784123)

  • 1. Entropy in the Non-Fermi-Liquid Regime of the Doped 2D Hubbard Model.
    Lenihan C; Kim AJ; Šimkovic Iv F; Kozik E
    Phys Rev Lett; 2021 Mar; 126(10):105701. PubMed ID: 33784123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model.
    Šimkovic F; LeBlanc JPF; Kim AJ; Deng Y; Prokof'ev NV; Svistunov BV; Kozik E
    Phys Rev Lett; 2020 Jan; 124(1):017003. PubMed ID: 31976700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pomeranchuk cooling of SU(2N) ultracold fermions in optical lattices.
    Cai Z; Hung HH; Wang L; Zheng D; Wu C
    Phys Rev Lett; 2013 May; 110(22):220401. PubMed ID: 23767701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Adiabatic Doping with Incommensurate Optical Lattices.
    Lin J; Nan J; Luo Y; Yao XC; Li X
    Phys Rev Lett; 2019 Dec; 123(23):233603. PubMed ID: 31868469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study.
    Vidhyadhiraja NS; Macridin A; Sen C; Jarrell M; Ma M
    Phys Rev Lett; 2009 May; 102(20):206407. PubMed ID: 19519050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model.
    Lenihan C; Kim AJ; Šimkovic F; Kozik E
    Phys Rev Lett; 2022 Sep; 129(10):107202. PubMed ID: 36112452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginal fermi liquid theory in the Hubbard model.
    Kakehashi Y; Fulde P
    Phys Rev Lett; 2005 Apr; 94(15):156401. PubMed ID: 15904163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudogaps in the 2D Hubbard Model.
    Huscroft C; Jarrell M; Maier T; Moukouri S; Tahvildarzadeh AN
    Phys Rev Lett; 2001 Jan; 86(1):139-142. PubMed ID: 11136113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator.
    Xu M; Kendrick LH; Kale A; Gang Y; Ji G; Scalettar RT; Lebrat M; Greiner M
    Nature; 2023 Aug; 620(7976):971-976. PubMed ID: 37532942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin transport in a Mott insulator of ultracold fermions.
    Nichols MA; Cheuk LW; Okan M; Hartke TR; Mendez E; Senthil T; Khatami E; Zhang H; Zwierlein MW
    Science; 2019 Jan; 363(6425):383-387. PubMed ID: 30523079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.