These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33784123)

  • 21. Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets.
    Bohrdt A; Wang Y; Koepsell J; Kánasz-Nagy M; Demler E; Grusdt F
    Phys Rev Lett; 2021 Jan; 126(2):026401. PubMed ID: 33512175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid.
    Koepsell J; Bourgund D; Sompet P; Hirthe S; Bohrdt A; Wang Y; Grusdt F; Demler E; Salomon G; Gross C; Bloch I
    Science; 2021 Oct; 374(6563):82-86. PubMed ID: 34591626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BCS-BEC crossover on the two-dimensional honeycomb lattice.
    Zhao E; Paramekanti A
    Phys Rev Lett; 2006 Dec; 97(23):230404. PubMed ID: 17280184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic order in the Hubbard model in three dimensions and the crossover to two dimensions.
    Xu J; Chiesa S; Walter EJ; Zhang S
    J Phys Condens Matter; 2013 Oct; 25(41):415602. PubMed ID: 24047878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4.
    Cao Y; Wang Q; Waugh JA; Reber TJ; Li H; Zhou X; Parham S; Park SR; Plumb NC; Rotenberg E; Bostwick A; Denlinger JD; Qi T; Hermele MA; Cao G; Dessau DS
    Nat Commun; 2016 Apr; 7():11367. PubMed ID: 27102065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.
    Lederer S; Schattner Y; Berg E; Kivelson SA
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4905-4910. PubMed ID: 28439023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
    Sherman A
    J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum criticality in twisted transition metal dichalcogenides.
    Ghiotto A; Shih EM; Pereira GSSG; Rhodes DA; Kim B; Zang J; Millis AJ; Watanabe K; Taniguchi T; Hone JC; Wang L; Dean CR; Pasupathy AN
    Nature; 2021 Sep; 597(7876):345-349. PubMed ID: 34526705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent developments in quantum Monte Carlo simulations with applications for cold gases.
    Pollet L
    Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum disordered phase near the Mott transition in the staggered-flux Hubbard model on a square lattice.
    Chang CC; Scalettar RT
    Phys Rev Lett; 2012 Jul; 109(2):026404. PubMed ID: 23030188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin-imbalance in a 2D Fermi-Hubbard system.
    Brown PT; Mitra D; Guardado-Sanchez E; Schauß P; Kondov SS; Khatami E; Paiva T; Trivedi N; Huse DA; Bakr WS
    Science; 2017 Sep; 357(6358):1385-1388. PubMed ID: 28963252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equation of State and Thermometry of the 2D SU(N) Fermi-Hubbard Model.
    Pasqualetti G; Bettermann O; Darkwah Oppong N; Ibarra-García-Padilla E; Dasgupta S; Scalettar RT; Hazzard KRA; Bloch I; Fölling S
    Phys Rev Lett; 2024 Feb; 132(8):083401. PubMed ID: 38457712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice.
    Yudin D; Hirschmeier D; Hafermann H; Eriksson O; Lichtenstein AI; Katsnelson MI
    Phys Rev Lett; 2014 Feb; 112(7):070403. PubMed ID: 24579572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging magnetic polarons in the doped Fermi-Hubbard model.
    Koepsell J; Vijayan J; Sompet P; Grusdt F; Hilker TA; Demler E; Salomon G; Bloch I; Gross C
    Nature; 2019 Aug; 572(7769):358-362. PubMed ID: 31413377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Fermi-liquid behavior in the periodic anderson model.
    Amaricci A; Sordi G; Rozenberg MJ
    Phys Rev Lett; 2008 Oct; 101(14):146403. PubMed ID: 18851550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Doublon-Hole Correlations and Fluctuation Thermometry in a Fermi-Hubbard Gas.
    Hartke T; Oreg B; Jia N; Zwierlein M
    Phys Rev Lett; 2020 Sep; 125(11):113601. PubMed ID: 32975995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of quantum criticality with ultracold atoms in optical lattices.
    Zhang X; Hung CL; Tung SK; Chin C
    Science; 2012 Mar; 335(6072):1070-2. PubMed ID: 22345397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Information-theoretic measures of superconductivity in a two-dimensional doped Mott insulator.
    Walsh C; Charlebois M; Sémon P; Sordi G; Tremblay AS
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.