These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33784199)

  • 1. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts.
    Masuda S; Furukawa Y; Kobayashi T; Sekine T; Kakegawa T
    Astrobiology; 2021 Apr; 21(4):413-420. PubMed ID: 33784199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact-induced amino acid formation on Hadean Earth and Noachian Mars.
    Takeuchi Y; Furukawa Y; Kobayashi T; Sekine T; Terada N; Kakegawa T
    Sci Rep; 2020 Jun; 10(1):9220. PubMed ID: 32513990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of meteorite impacts on the atmospheric evolution of Mars.
    Pham LB; Karatekin O; Dehant V
    Astrobiology; 2009; 9(1):45-54. PubMed ID: 19317624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life on Mars: chemical arguments and clues from Martian meteorites.
    Brack A; Pillinger CT
    Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere.
    Kurosawa K; Sugita S; Ishibashi K; Hasegawa S; Sekine Y; Ogawa NO; Kadono T; Ohno S; Ohkouchi N; Nagaoka Y; Matsui T
    Orig Life Evol Biosph; 2013 Jun; 43(3):221-45. PubMed ID: 23877440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Meteorite Impacts in the Origin of Life.
    Osinski GR; Cockell CS; Pontefract A; Sapers HM
    Astrobiology; 2020 Sep; 20(9):1121-1149. PubMed ID: 32876492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meteorite Impact-Induced Rapid NH
    Shimamura K; Shimojo F; Nakano A; Tanaka S
    Sci Rep; 2016 Dec; 6():38953. PubMed ID: 27966594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotic Syntheses Under Shock in the Water - Formamide - Potassium Bicarbonate - Sodium Hydroxide System.
    Shtyrlin VG; Borissenok VA; Serov NY; Simakov VG; Bragunets VA; Trunin IR; Tereshkina IA; Koshkin SA; Bukharov MS; Gilyazetdinov EM; Shestakov EE; Sirotkina AG; Zakharov AV
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):1-18. PubMed ID: 31004318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.
    Umeda Y; Fukunaga N; Sekine T; Furukawa Y; Kakegawa T; Kobayashi T; Nakazawa H
    J Biol Phys; 2016 Jan; 42(1):177-98. PubMed ID: 26369758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin and early evolution of life on Earth.
    Oró J; Miller SL; Lazcano A
    Annu Rev Earth Planet Sci; 1990; 18():317-56. PubMed ID: 11538678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.
    Burton AS; Stern JC; Elsila JE; Glavin DP; Dworkin JP
    Chem Soc Rev; 2012 Aug; 41(16):5459-72. PubMed ID: 22706603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.
    Pasek MA; Lauretta DS
    Astrobiology; 2005 Aug; 5(4):515-35. PubMed ID: 16078869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth.
    Cooper G; Kimmich N; Belisle W; Sarinana J; Brabham K; Garrel L
    Nature; 2001 Dec 20-27; 414(6866):879-83. PubMed ID: 11780054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prebiotic chemistry in clouds.
    Oberbeck VR; Marshall J; Shen T
    J Mol Evol; 1991; 32():296-303. PubMed ID: 11538260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status of the prebiotic synthesis of small molecules.
    Miller SL
    Chem Scr; 1986; 26B():5-11. PubMed ID: 11542054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral self-organization on a lifeless planet.
    García-Ruiz JM; van Zuilen MA; Bach W
    Phys Life Rev; 2020 Dec; 34-35():62-82. PubMed ID: 32303465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plausibly prebiotic synthesis of phosphonic acids.
    de Graaf RM; Visscher J; Schwartz AW
    Nature; 1995 Nov; 378(6556):474-7. PubMed ID: 7477402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical evolution on Titan: comparisons to the prebiotic earth.
    Clarke DW; Ferris JP
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):225-48. PubMed ID: 9150575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere.
    Kasting JF
    Orig Life Evol Biosph; 1992; 20():199-231. PubMed ID: 11537523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Racemization of Valine by Impact-Induced Heating.
    Furukawa Y; Takase A; Sekine T; Kakegawa T; Kobayashi T
    Orig Life Evol Biosph; 2018 Mar; 48(1):131-139. PubMed ID: 28484901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.