These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33784334)

  • 1. Optimal strategy of sEMG feature and measurement position for grasp force estimation.
    Wu C; Cao Q; Fei F; Yang D; Xu B; Zhang G; Zeng H; Song A
    PLoS One; 2021; 16(3):e0247883. PubMed ID: 33784334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN.
    Wu C; Zeng H; Song A; Xu B
    Front Neurosci; 2017; 11():343. PubMed ID: 28713231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous grip force estimation from surface electromyography using generalized regression neural network.
    Mao H; Fang P; Zheng Y; Tian L; Li X; Wang P; Peng L; Li G
    Technol Health Care; 2023; 31(2):675-689. PubMed ID: 36120747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic study on combined motion estimation using multichannel surface EMG signals.
    Nagata K; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7865-8. PubMed ID: 22256163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of muscle strength during motion recognition using multichannel surface EMG signals.
    Nagata K; Nakano T; Magatani K; Yamada M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():351-4. PubMed ID: 19162665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.
    Arjunan SP; Kumar DK
    J Neuroeng Rehabil; 2010 Oct; 7():53. PubMed ID: 20964863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand Posture and Force Estimation Using Surface Electromyography and an Artificial Neural Network.
    Wang M; Zhao C; Barr A; Fan H; Yu S; Kapellusch J; Harris Adamson C
    Hum Factors; 2023 May; 65(3):382-402. PubMed ID: 34006135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of least square method for muscular strength estimation in hand motion recognition using surface EMG.
    Nakano T; Nagata K; Yamada M; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2655-8. PubMed ID: 19963777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grasp force estimation from the transient EMG using high-density surface recordings.
    Martinez IJR; Mannini A; Clemente F; Sabatini AM; Cipriani C
    J Neural Eng; 2020 Feb; 17(1):016052. PubMed ID: 31899898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-Based Grasp Classification for Prosthetic Hand Control Using sEMG.
    Wang S; Zheng J; Zheng B; Jiang X
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation.
    Wang J; Pang M; Yu P; Tang B; Xiang K; Ju Z
    Appl Bionics Biomech; 2021; 2021():8817480. PubMed ID: 33628332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.
    Palermo F; Cognolato M; Gijsberts A; Muller H; Caputo B; Atzori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1154-1159. PubMed ID: 28813977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between object properties and EMG during reaching to grasp.
    Fligge N; Urbanek H; van der Smagt P
    J Electromyogr Kinesiol; 2013 Apr; 23(2):402-10. PubMed ID: 23207412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy of surface EMG reflects object weight in grasp-and-lift task.
    Yuqi Li ; Jelfs B; Chan RHM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2530-2533. PubMed ID: 29060414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation.
    Dosen S; Cipriani C; Kostić M; Controzzi M; Carrozza MC; Popović DB
    J Neuroeng Rehabil; 2010 Aug; 7():42. PubMed ID: 20731834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis in the electromyography-force relationship: toward an optimal model for the estimation of force.
    Kamavuako EN; Rosenvang JC
    Muscle Nerve; 2012 Nov; 46(5):755-8. PubMed ID: 22996311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation.
    Potluri C; Anugolu M; Schoen MP; Subbaram Naidu D; Urfer A; Chiu S
    Comput Biol Med; 2013 Nov; 43(11):1815-26. PubMed ID: 24209927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online Grasp Force Estimation From the Transient EMG.
    Martinez IJR; Mannini A; Clemente F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2333-2341. PubMed ID: 32894718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern recognition of hand movements with low density sEMG for prosthesis control purposes.
    Villarejo JJ; Frizera A; Bastos TF; Sarmiento JF
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650361. PubMed ID: 24187180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.