BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33784342)

  • 1. Brain mass explains prey size selection better than beak, gizzard and body size in a benthivorous duck species.
    Laursen K; Møller AP
    PLoS One; 2021; 16(3):e0248615. PubMed ID: 33784342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver Antioxidants in Relation to Beak Morphology, Gizzard Size and Diet in the Common Eider
    Møller AP; Laursen K; Karadas F
    Antioxidants (Basel); 2019 Jan; 8(2):. PubMed ID: 30708939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The shapes of bird beaks are highly controlled by nondietary factors.
    Bright JA; Marugán-Lobón J; Cobb SN; Rayfield EJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5352-7. PubMed ID: 27125856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinterpretation of gizzard sizes of red knots world-wide emphasises overriding importance of prey quality at migratory stopover sites.
    van Gils JA; Battley PF; Piersma T; Drent R
    Proc Biol Sci; 2005 Dec; 272(1581):2609-18. PubMed ID: 16321783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context.
    Oudman T; Hin V; Dekinga A; van Gils JA
    PLoS One; 2015; 10(8):e0136144. PubMed ID: 26287951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique.
    Fowler DW; Freedman EA; Scannella JB
    PLoS One; 2009 Nov; 4(11):e7999. PubMed ID: 19946365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Effects of Predator and Prey Body Size on Sea Star Feeding Behaviors.
    Gooding RA; Harley CD
    Biol Bull; 2015 Jun; 228(3):192-200. PubMed ID: 26124446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The body size-dependent diet composition of north american sea ducks in winter.
    Ouellet JF; Vanpé C; Guillemette M
    PLoS One; 2013; 8(6):e65667. PubMed ID: 23755266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predator size, prey size and threshold food densities of diving ducks: does a common prey base support fewer large animals?
    Richman SE; Lovvorn JR
    J Anim Ecol; 2009 Sep; 78(5):1033-42. PubMed ID: 19426253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movements of wintering surf scoters: predator responses to different prey landscapes.
    Kirk M; Esler D; Iverson SA; Boyd WS
    Oecologia; 2008 Apr; 155(4):859-67. PubMed ID: 18210158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology.
    Gurd DB
    Am Nat; 2007 Mar; 169(3):334-43. PubMed ID: 17230398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator-prey size relationships in an African large-mammal food web.
    Owen-Smith N; Mills MG
    J Anim Ecol; 2008 Jan; 77(1):173-83. PubMed ID: 18177336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring foraging activity in a deep-diving bird: comparing wiggles, oesophageal temperatures and beak-opening angles as proxies of feeding.
    Hanuise N; Bost CA; Huin W; Auber A; Halsey LG; Handrich Y
    J Exp Biol; 2010 Nov; 213(Pt 22):3874-80. PubMed ID: 21037067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead poisoning of spectacled eiders (Somateria fischeri) and of a common eider (Somateria mollissima) in Alaska.
    Franson JC; Petersen MR; Meteyer CU; Smith MR
    J Wildl Dis; 1995 Apr; 31(2):268-71. PubMed ID: 8583651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead concentrations in blood from incubating common eiders (Somateria mollissima) in the Baltic Sea.
    Lam SS; McPartland M; Noori B; Garbus SE; Lierhagen S; Lyngs P; Dietz R; Therkildsen OR; Christensen TK; Tjørnløv RS; Kanstrup N; Fox AD; Sørensen IH; Arzel C; Krøkje Å; Sonne C
    Environ Int; 2020 Apr; 137():105582. PubMed ID: 32086081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gluttonous predators: how to estimate prey size when there are too many prey.
    Araújo MS; Pinheiro A; Reis SF
    Braz J Biol; 2008 May; 68(2):315-20. PubMed ID: 18660959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economic design in a long-distance migrating molluscivore: how fast-fuelling red knots in Bohai Bay, China, get away with small gizzards.
    Yang HY; Chen B; Ma ZJ; Hua N; van Gils JA; Zhang ZW; Piersma T
    J Exp Biol; 2013 Oct; 216(Pt 19):3627-36. PubMed ID: 24006345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From snout to beak: the loss of teeth in birds.
    Louchart A; Viriot L
    Trends Ecol Evol; 2011 Dec; 26(12):663-73. PubMed ID: 21978465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeding habits of common eiders Somateria mollissima on the western coast of Vaygach Island.
    Krasnov YV; Shklyarevich GA; Sukhotin AA
    Dokl Biol Sci; 2014 Nov; 459():341-3. PubMed ID: 25560211
    [No Abstract]   [Full Text] [Related]  

  • 20. Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors.
    Potier S; Mitkus M; Bonadonna F; Duriez O; Isard PF; Dulaurent T; Mentek M; Kelber A
    Brain Behav Evol; 2017; 90(3):232-242. PubMed ID: 29020667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.