BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33784352)

  • 1. Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices.
    Li H; Yang W; Lei J; She J; Zhou X
    PLoS One; 2021; 16(3):e0249351. PubMed ID: 33784352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Estimation models for vegetation water content at both leaf and canopy levels].
    Shen Y; Niu Z; Yan C
    Ying Yong Sheng Tai Xue Bao; 2005 Jul; 16(7):1218-23. PubMed ID: 16252855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions.
    Wang J; Xu R; Yang S
    Environ Monit Assess; 2009 Oct; 157(1-4):459-69. PubMed ID: 18853268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting vegetation water content in wheat using normalized difference water indices derived from ground measurements.
    Wu C; Niu Z; Tang Q; Huang W
    J Plant Res; 2009 May; 122(3):317-26. PubMed ID: 19242776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model.
    Yang J; Yang S; Zhang Y; Shi S; Du L
    Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Discussion on hyperspectral index for the estimation of cotton canopy water content].
    Wang Q; Yi QX; Bao AM; Zhao J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):507-12. PubMed ID: 23697143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize.
    Zhang F; Zhou G
    BMC Ecol; 2019 Apr; 19(1):18. PubMed ID: 31035986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices.
    Sun H; Feng M; Xiao L; Yang W; Wang C; Jia X; Zhao Y; Zhao C; Muhammad SK; Li D
    PLoS One; 2019; 14(6):e0216890. PubMed ID: 31181067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.
    Cheng T; Rivard B; Sánchez-Azofeifa AG; Féret JB; Jacquemoud S; Ustin SL
    J Plant Physiol; 2012 Aug; 169(12):1134-42. PubMed ID: 22608180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the leaf chlorophyll content using multiangular spectral reflectance factor.
    Li W; Sun Z; Lu S; Omasa K
    Plant Cell Environ; 2019 Nov; 42(11):3152-3165. PubMed ID: 31256442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].
    Wu J; Chen TS; Pan LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1961-6. PubMed ID: 26717760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring novel bands and key index for evaluating leaf equivalent water thickness in wheat using hyperspectra influenced by nitrogen.
    Yao X; Jia W; Si H; Guo Z; Tian Y; Liu X; Cao W; Zhu Y
    PLoS One; 2014; 9(6):e96352. PubMed ID: 24914778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data.
    Peng Y; Zhang M; Xu Z; Yang T; Su Y; Zhou T; Wang H; Wang Y; Lin Y
    Sci Rep; 2020 Mar; 10(1):4361. PubMed ID: 32152356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.
    Fassnacht FE; Stenzel S; Gitelson AA
    J Plant Physiol; 2015 Mar; 176():210-7. PubMed ID: 25512167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Driven Methods for the Estimation of Leaf Water and Dry Matter Content: Performances, Potential and Limitations.
    Yang B; Lin H; He Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32967134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.