These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 33784381)
1. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381 [TBL] [Abstract][Full Text] [Related]
2. StaBle-ABPpred: a stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides. Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34750606 [TBL] [Abstract][Full Text] [Related]
3. Deep-AFPpred: identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM. Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34670278 [TBL] [Abstract][Full Text] [Related]
4. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features. Zhuang J; Gao W; Su R J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833 [TBL] [Abstract][Full Text] [Related]
5. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Yao L; Guan J; Xie P; Chung CR; Deng J; Huang Y; Chiang YC; Lee TY Protein Sci; 2024 Jun; 33(6):e5006. PubMed ID: 38723168 [TBL] [Abstract][Full Text] [Related]
6. PGAT-ABPp: harnessing protein language models and graph attention networks for antibacterial peptide identification with remarkable accuracy. Hao Y; Liu X; Fu H; Shao X; Cai W Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39120878 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence-based model for predicting the minimum inhibitory concentration of antibacterial peptides against ESKAPEE pathogens. Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S IEEE J Biomed Health Inform; 2023 Apr; PP():. PubMed ID: 37115837 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial activity of lipo-α/sulfono-γ-AA hybrid peptides. Wei L; Wang M; Gao R; Fatirkhorani R; Cai J Eur J Med Chem; 2020 Jan; 186():111901. PubMed ID: 31771826 [TBL] [Abstract][Full Text] [Related]
10. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. Grafskaia EN; Polina NF; Babenko VV; Kharlampieva DD; Bobrovsky PA; Manuvera VA; Farafonova TE; Anikanov NA; Lazarev VN J Bioinform Comput Biol; 2018 Apr; 16(2):1840006. PubMed ID: 29361893 [TBL] [Abstract][Full Text] [Related]
11. A novel polycationic analogue of gratisin with antibiotic activity against both Gram-positive and Gram-negative bacteria. Tamaki M; Kokuno M; Suzuki Y; Iwama M; Shindo M; Uchida Y J Antibiot (Tokyo); 2008 Jan; 61(1):33-5. PubMed ID: 18305357 [TBL] [Abstract][Full Text] [Related]
12. Brucin, an antibacterial peptide derived from fruit protein of Fructus Bruceae, Brucea javanica (L.) Merr. Sornwatana T; Roytrakul S; Wetprasit N; Ratanapo S Lett Appl Microbiol; 2013 Aug; 57(2):129-36. PubMed ID: 23593989 [TBL] [Abstract][Full Text] [Related]
13. Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections. Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S IEEE J Biomed Health Inform; 2022 Oct; 26(10):5067-5074. PubMed ID: 34822333 [TBL] [Abstract][Full Text] [Related]
15. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
16. The synthesis and screening of 1,4,5,8-naphthalenetetracarboxylic diimide-peptide conjugates with antibacterial activity. Miller CT; Weragoda R; Izbicka E; Iverson BL Bioorg Med Chem; 2001 Aug; 9(8):2015-24. PubMed ID: 11504638 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and antimicrobial activity of novel globomycin analogues. Kiho T; Nakayama M; Yasuda K; Miyakoshi S; Inukai M; Kogen H Bioorg Med Chem Lett; 2003 Jul; 13(14):2315-8. PubMed ID: 12824025 [TBL] [Abstract][Full Text] [Related]
18. LSTM-PHV: prediction of human-virus protein-protein interactions by LSTM with word2vec. Tsukiyama S; Hasan MM; Fujii S; Kurata H Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34160596 [TBL] [Abstract][Full Text] [Related]
19. Influence of truncation of avian β-defensin-4 on biological activity and peptide-membrane interaction. Dong N; Ma QQ; Shan AS; Wang L; Sun WY; Li YZ Protein Pept Lett; 2012 Apr; 19(4):430-8. PubMed ID: 22316306 [TBL] [Abstract][Full Text] [Related]
20. Structure-activity relationships of globomycin analogues as antibiotics. Kiho T; Nakayama M; Yasuda K; Miyakoshi S; Inukai M; Kogen H Bioorg Med Chem; 2004 Jan; 12(2):337-61. PubMed ID: 14723954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]