These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33784462)

  • 1. Brownian Dynamics Simulations of Proteins in the Presence of Surfaces: Long-Range Electrostatics and Mean-Field Hydrodynamics.
    Reinhardt M; Bruce NJ; Kokh DB; Wade RC
    J Chem Theory Comput; 2021 Jun; 17(6):3510-3524. PubMed ID: 33784462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules.
    Mereghetti P; Martinez M; Wade RC
    BMC Biophys; 2014; 7():4. PubMed ID: 25045516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of solutes with hydrodynamic interactions: comparison between Brownian dynamics and stochastic rotation dynamics simulations.
    Batôt G; Dahirel V; Mériguet G; Louis AA; Jardat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043304. PubMed ID: 24229301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.
    Mereghetti P; Wade RC
    J Phys Chem B; 2012 Jul; 116(29):8523-33. PubMed ID: 22594708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic Steering in Protein Association Revisited: Surprisingly Minuscule Effects of Considerable Torques.
    Antosiewicz JM; Kamiński K; Długosz M
    J Phys Chem B; 2017 Sep; 121(36):8475-8491. PubMed ID: 28820263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SDA 7: A modular and parallel implementation of the simulation of diffusional association software.
    Martinez M; Bruce NJ; Romanowska J; Kokh DB; Ozboyaci M; Yu X; Öztürk MA; Richter S; Wade RC
    J Comput Chem; 2015 Aug; 36(21):1631-45. PubMed ID: 26123630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package.
    Geyer T
    BMC Biophys; 2011 Apr; 4():7. PubMed ID: 21596002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. webSDA: a web server to simulate macromolecular diffusional association.
    Yu X; Martinez M; Gable AL; Fuller JC; Bruce NJ; Richter S; Wade RC
    Nucleic Acids Res; 2015 Jul; 43(W1):W220-4. PubMed ID: 25883142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant-pH Brownian Dynamics Simulations of a Protein near a Charged Surface.
    Antosiewicz JM; Długosz M
    ACS Omega; 2020 Nov; 5(46):30282-30298. PubMed ID: 33251463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: algorithm and limitations.
    Ando T; Chow E; Skolnick J
    J Chem Phys; 2013 Sep; 139(12):121922. PubMed ID: 24089734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Conformation Monte Carlo: A Method for Introducing Flexibility in Efficient Simulations of Many-Protein Systems.
    Prytkova V; Heyden M; Khago D; Freites JA; Butts CT; Martin RW; Tobias DJ
    J Phys Chem B; 2016 Aug; 120(33):8115-26. PubMed ID: 27063730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION.
    Finch C; Clarke T; Hickman JJ
    J Comput Phys; 2013 Jul; 244():212-222. PubMed ID: 23729843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for Hydrodynamic Orienting Effects in the Association of Tri-
    Wielgus-Kutrowska B; Marcisz U; Antosiewicz JM
    J Phys Chem B; 2021 Sep; 125(38):10701-10709. PubMed ID: 34546051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Low Storage and Memory Treatment of Gridded Interaction Fields for Simulations of Macromolecular Association.
    Ozboyaci M; Martinez M; Wade RC
    J Chem Theory Comput; 2016 Sep; 12(9):4563-77. PubMed ID: 27463233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulation of protein-protein diffusional encounter.
    Gabdoulline RR; Wade RC
    Methods; 1998 Mar; 14(3):329-41. PubMed ID: 9571088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules.
    Tworek JW; Elcock AH
    J Chem Theory Comput; 2023 Aug; 19(15):5099-5111. PubMed ID: 37409946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations.
    Gabdoulline RR; Wade RC
    J Mol Biol; 2001 Mar; 306(5):1139-55. PubMed ID: 11237623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.