These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33784526)

  • 1. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids.
    Gurav R; Bhatia SK; Choi TR; Choi YK; Kim HJ; Song HS; Park SL; Lee HS; Lee SM; Choi KY; Yang YH
    Sci Total Environ; 2021 Aug; 781():146636. PubMed ID: 33784526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorptive removal of synthetic plastic components bisphenol-A and solvent black-3 dye from single and binary solutions using pristine pinecone biochar.
    Gurav R; Bhatia SK; Choi TR; Kim HJ; Choi YK; Lee HJ; Ham S; Cho JY; Kim SH; Lee SH; Yun J; Yang YH
    Chemosphere; 2022 Jun; 296():134034. PubMed ID: 35183576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions.
    Vijayaraghavan K; Balasubramanian R
    Chemosphere; 2021 Sep; 278():130361. PubMed ID: 33838420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorptive behavior of engineered biochar /hydrochar for tetracycline removal from synthetic wastewater.
    Jeganathan Y; Asharp T; Nadarajah K
    Environ Pollut; 2024 Mar; 345():123452. PubMed ID: 38286263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasibility study on production, characterisation and application of empty fruit bunch oil palm biochar for Mn
    Savitri S; Reguyal F; Sarmah AK
    Environ Pollut; 2023 Feb; 318():120879. PubMed ID: 36566919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal.
    Navarathna CM; Bombuwala Dewage N; Keeton C; Pennisson J; Henderson R; Lashley B; Zhang X; Hassan EB; Perez F; Mohan D; Pittman CU; Mlsna T
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9248-9260. PubMed ID: 31990524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis.
    Lawal AA; Hassan MA; Ahmad Farid MA; Tengku Yasim-Anuar TA; Samsudin MH; Mohd Yusoff MZ; Zakaria MR; Mokhtar MN; Shirai Y
    Environ Pollut; 2021 Jan; 269():116197. PubMed ID: 33316496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability.
    Li X; Shi J; Luo X
    Bioresour Technol; 2022 Jan; 343():126103. PubMed ID: 34634463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost effective and practically viable oil spillage mitigation: Comprehensive study with biochar.
    Kandanelli R; Meesala L; Kumar J; Raju CSK; Peddy VCR; Gandham S; Kumar P
    Mar Pollut Bull; 2018 Mar; 128():32-40. PubMed ID: 29571379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material.
    Hoslett J; Ghazal H; Mohamad N; Jouhara H
    Sci Total Environ; 2020 Apr; 714():136832. PubMed ID: 32018976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar.
    Bashir M; Mohan C; Tyagi S; Annachhatre A
    Water Sci Technol; 2022 Aug; 86(3):530-554. PubMed ID: 35960835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive removal of anthracene from water by biochar derived amphiphilic carbon dots decorated with chitosan.
    Hashemzadeh F; Khoshmardan ME; Sanaei D; Ghalhari MR; Sharifan H; Inglezakis VJ; Arcibar-Orozco JA; Shaikh WA; Khan E; Biswas JK
    Chemosphere; 2024 Mar; 352():141248. PubMed ID: 38280643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution.
    Qiao K; Tian W; Bai J; Dong J; Zhao J; Gong X; Liu S
    Ecotoxicol Environ Saf; 2018 Mar; 149():80-87. PubMed ID: 29154138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biochar prepared from slow pyrolysis of Jordanian olive oil processing solid waste and adsorption efficiency of Hg
    Hanandeh AE; Abu-Zurayk RA; Hamadneh I; Al-Dujaili AH
    Water Sci Technol; 2016 Oct; 74(8):1899-1910. PubMed ID: 27789890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced removal of aged and differently functionalized polystyrene nanoplastics using ball-milled magnetic pinewood biochars.
    Shi Q; Guo S; Tang J; Lyu H; Ri C; Sun H
    Environ Pollut; 2023 Jan; 316(Pt 1):120696. PubMed ID: 36414160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye.
    Gurav R; Bhatia SK; Choi TR; Choi YK; Kim HJ; Song HS; Lee SM; Lee Park S; Lee HS; Koh J; Jeon JM; Yoon JJ; Yang YH
    Chemosphere; 2021 Feb; 264(Pt 2):128539. PubMed ID: 33059279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field.
    Ren HY; Wei ZJ; Wang Y; Deng YP; Li MY; Wang B
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36427-36438. PubMed ID: 32562230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite.
    Song J; Messele SA; Meng L; Huang Z; Gamal El-Din M
    Water Res; 2021 Apr; 194():116930. PubMed ID: 33631699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions.
    Shin J; Kwak J; Lee YG; Kim S; Choi M; Bae S; Lee SH; Park Y; Chon K
    Environ Pollut; 2021 Feb; 270():116244. PubMed ID: 33321433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant.
    Singh V; Srivastava VC
    Environ Pollut; 2020 Apr; 259():113822. PubMed ID: 31887588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.