These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33784884)

  • 1. Rolling balance board of adjustable geometry as a tool to assess balancing skill and to estimate reaction time delay.
    Molnar CA; Zelei A; Insperger T
    J R Soc Interface; 2021 Mar; 18(176):20200956. PubMed ID: 33784884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical delay as a measure for the difficulty of frontal plane balancing on rolling balance board.
    Molnar CA; Insperger T
    J Biomech; 2022 Jun; 138():111117. PubMed ID: 35580398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual stick balancing: skill development in Newtonian and Aristotelian dynamics.
    Kovacs BA; Insperger T
    J R Soc Interface; 2022 Mar; 19(188):20210854. PubMed ID: 35232278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling stick balancing on a linear track: Delayed state feedback or delay-compensating predictor feedback?
    Nagy DJ; Milton JG; Insperger T
    Biol Cybern; 2023 Apr; 117(1-2):113-127. PubMed ID: 36943486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictor feedback models for stick balancing with delay mismatch and sensory dead zones.
    Nagy DJ; Insperger T
    Chaos; 2022 May; 32(5):053108. PubMed ID: 35649988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of sensory quantization and control torque saturation on human balance control.
    Gyebrószki G; Csernák G; Milton JG; Insperger T
    Chaos; 2021 Mar; 31(3):033145. PubMed ID: 33810721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity.
    Kovacs BA; Milton J; Insperger T
    R Soc Open Sci; 2019 Nov; 6(11):191006. PubMed ID: 31827841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive feedback in human simulated pendulum balancing.
    Gawthrop P; Loram I; Lakie M
    Biol Cybern; 2009 Aug; 101(2):131-46. PubMed ID: 19588160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturation limits the contribution of acceleration feedback to balancing against reaction delay.
    Zhang L; Stepan G; Insperger T
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.
    Cruise DR; Chagdes JR; Liddy JJ; Rietdyk S; Haddad JM; Zelaznik HN; Raman A
    J Biomech; 2017 Jul; 60():48-56. PubMed ID: 28668186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration feedback improves balancing against reflex delay.
    Insperger T; Milton J; Stépán G
    J R Soc Interface; 2013 Feb; 10(79):20120763. PubMed ID: 23173196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay effects in the human sensory system during balancing.
    Stepan G
    Philos Trans A Math Phys Eng Sci; 2009 Mar; 367(1891):1195-212. PubMed ID: 19218159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sensory-motor latencies and active muscular stiffness on stability for an ankle-hip model of balance on a balance board.
    Chumacero E; Yang J; Chagdes JR
    J Biomech; 2018 Jun; 75():77-88. PubMed ID: 29861093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to balance on one leg: motor strategy and sensory weighting.
    van Dieën JH; van Leeuwen M; Faber GS
    J Neurophysiol; 2015 Nov; 114(5):2967-82. PubMed ID: 26400255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to stand with unexpected sensorimotor delays.
    Rasman BG; Forbes PA; Peters RM; Ortiz O; Franks I; Inglis JT; Chua R; Blouin JS
    Elife; 2021 Aug; 10():. PubMed ID: 34374648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback Delay Changes the Control of an Inverted Pendulum.
    Franklin S; Cesonis J; Leib R; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1517-1520. PubMed ID: 31946182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical activation during balancing on a balance board.
    Herold F; Orlowski K; Börmel S; Müller NG
    Hum Mov Sci; 2017 Jan; 51():51-58. PubMed ID: 27846398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time to reconfigure balancing behaviour in man: changing visual condition while riding a continuously moving platform.
    De Nunzio AM; Schieppati M
    Exp Brain Res; 2007 Mar; 178(1):18-36. PubMed ID: 17013618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing metrics and control laws for the learning process: ball and beam balancing.
    Buza G; Milton J; Bencsik L; Insperger T
    Biol Cybern; 2020 Feb; 114(1):83-93. PubMed ID: 31955261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pain on balancing behavior: Complexity analysis of mediolateral force trajectories.
    Leich Hilbun A; Karsai I; Perry D
    Gait Posture; 2019 Jun; 71():145-150. PubMed ID: 31063930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.