BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3378500)

  • 21. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes.
    Cavalca L; Dell'Amico E; Andreoni V
    Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Purification and properties of two enzymes of meta-cleaving the aromatic ring controlled by the biphenyl biodegradation plasmid pBS 241 from Pseudomonas putida].
    Selifonov SA; Starovoĭtov II; Skriabin GK
    Biokhimiia; 1988 Jun; 53(6):1040-7. PubMed ID: 3179349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Rhizosphere bacteria Pseudomonas aureofaciens and Pseudomonas chlororaphis oxidizing naphthalene in the presence of arsenic].
    Sizova OI; Kochetkov VV; Boronin AM
    Prikl Biokhim Mikrobiol; 2010; 46(1):45-50. PubMed ID: 20198916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway.
    Davis JK; He Z; Somerville CC; Spain JC
    Arch Microbiol; 1999 Nov; 172(5):330-9. PubMed ID: 10550475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri.
    Kozlovsky SA; Kunc F
    Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Stability of the NPL-1 and NPL-41 plasmids of naphthalene biodegradation in Pseudomonas putida populations in continuous culture].
    Boronin AM; Filonov AE; Balakshina VV; Kulakova AN
    Mikrobiologiia; 1985; 54(4):610-5. PubMed ID: 4058326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of phe B gene encoding catechol 2,3-dioxygenase.
    Nishihara T; Yamada T; Takano K; Osada S; Nishikawa J; Imagawa M
    Lett Appl Microbiol; 1994 Oct; 19(4):181-3. PubMed ID: 7765392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment.
    Tagger S; Truffaut N; Le Petit J
    Can J Microbiol; 1990 Oct; 36(10):676-81. PubMed ID: 2253108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Comparative analysis of the organization of the NPL-1 plasmid controlling naphthalene oxidation in Pseudomonas putida and its derivatives].
    Kosheleva IA; Tsoĭ TV; Kulakova AN; Boronin AM
    Genetika; 1986 Oct; 22(10):2389-97. PubMed ID: 3025060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp.
    Vora KA; Modi VV
    Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of catechol- and chlorocatechol-degrading activity in the ortho-chlorinated benzoic acid-degrading Pseudomonas sp. CPE2 strain.
    Di Gioia D; Fava F; Baldoni F; Marchetti L
    Res Microbiol; 1998 May; 149(5):339-48. PubMed ID: 9766234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
    Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ
    J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abundant expression of Pseudomonas genes for chlorocatechol metabolism.
    Ngai KL; Ornston LN
    J Bacteriol; 1988 May; 170(5):2412-3. PubMed ID: 3360749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B.
    Kim YM; Park K; Kim WC; Shin JH; Kim JE; Park HD; Rhee IK
    J Agric Food Chem; 2007 Jun; 55(12):4722-7. PubMed ID: 17497880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The primary stages of alpha-methylstyrene degradation by a culture of Pseudomonas aeruginosa 8].
    Rustemov SA; Golovleva LA; Alieva RM; Baskunov BP; Nefedova MIu
    Izv Akad Nauk SSSR Biol; 1989; (1):102-8. PubMed ID: 2497163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genes similar to naphthalene dioxygenase genes in trifluralin-degrading bacteria.
    Bellinaso Mde L; Henriques JA; Gaylarde CC; Greer CW
    Pest Manag Sci; 2004 May; 60(5):474-8. PubMed ID: 15154514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100.
    Ghadi SC; Sangodkar UM
    Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.