These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 33785173)
1. An introduction and use of the CRISPR-Cas systems. Singh V Prog Mol Biol Transl Sci; 2021; 179():1-10. PubMed ID: 33785173 [TBL] [Abstract][Full Text] [Related]
2. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
5. Developing Rice Mutants Using CRISPR/Cas9-Based Genome Editing Technology. Xu K; Li Y Methods Mol Biol; 2022; 2400():11-19. PubMed ID: 34905186 [TBL] [Abstract][Full Text] [Related]
6. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
11. Novel Microbial Modification Tools to Convert Lipids into Other Value-Added Products. Kumari P; Yusuf F; Gaur NA Methods Mol Biol; 2019; 1995():161-171. PubMed ID: 31148128 [TBL] [Abstract][Full Text] [Related]
12. CRISPR-Cas systems: ushering in the new genome editing era. Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520 [TBL] [Abstract][Full Text] [Related]
13. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis. Yu Z; Chen Q; Chen W; Zhang X; Mei F; Zhang P; Zhao M; Wang X; Shi N; Jackson S; Hong Y J Integr Plant Biol; 2018 May; 60(5):376-381. PubMed ID: 29226588 [TBL] [Abstract][Full Text] [Related]
15. Modification of Cas9, gRNA and PAM: Key to further regulate genome editing and its applications. Gupta R; Gupta D; Ahmed KT; Dey D; Singh R; Swarnakar S; Ravichandiran V; Roy S; Ghosh D Prog Mol Biol Transl Sci; 2021; 178():85-98. PubMed ID: 33685601 [TBL] [Abstract][Full Text] [Related]
16. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
17. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC mBio; 2020 Jan; 11(1):. PubMed ID: 31992616 [TBL] [Abstract][Full Text] [Related]
18. CRISPR Nickase-Mediated Base Editing in Yeast. Kuroda K; Ueda M Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710 [TBL] [Abstract][Full Text] [Related]
19. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas9-Guided Genome Engineering in C. elegans. Kim HM; Colaiácovo MP Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]