BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3378673)

  • 1. A molecular marker for cell guidance information in the axolotl embryo.
    Zackson SL; Steinberg MS
    Dev Biol; 1988 Jun; 127(2):435-42. PubMed ID: 3378673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three populations of migrating amphibian embryonic cells utilize different guidance cues.
    Thibaudeau G; Drawbridge J; Dollarhide AW; Haque T; Steinberg MS
    Dev Biol; 1993 Oct; 159(2):657-68. PubMed ID: 8405687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epidermis is a source of directional information for the migrating pronephric duct in Ambystoma mexicanum embryos.
    Drawbridge J; Wolfe AE; Delgado YL; Steinberg MS
    Dev Biol; 1995 Dec; 172(2):440-51. PubMed ID: 8612962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cranial neural crest cells exhibit directed migration on the pronephric duct pathway: further evidence for an in vivo adhesion gradient.
    Zackson SL; Steinberg MS
    Dev Biol; 1986 Oct; 117(2):342-53. PubMed ID: 3758476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos.
    Epperlein HH; Halfter W; Tucker RP
    Development; 1988 Aug; 103(4):743-56. PubMed ID: 2470571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl.
    Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH
    Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
    Ericsson R; Cerny R; Falck P; Olsson L
    Dev Dyn; 2004 Oct; 231(2):237-47. PubMed ID: 15366001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphibian pronephric duct morphogenesis: segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment.
    Poole TJ; Steinberg MS
    J Embryol Exp Morphol; 1981 Jun; 63():1-16. PubMed ID: 7310283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation.
    Epperlein H; Meulemans D; Bronner-Fraser M; Steinbeisser H; Selleck MA
    Development; 2000 Jun; 127(12):2751-61. PubMed ID: 10821772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axolotl pronephric duct cell migration is sensitive to phosphatidylinositol-specific phospholipase C.
    Zackson SL; Steinberg MS
    Development; 1989 Jan; 105(1):1-7. PubMed ID: 2553384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenesis of the axolotl pronephric duct: a model system for the study of cell migration in vivo.
    Drawbridge J; Steinberg MS
    Int J Dev Biol; 1996 Aug; 40(4):709-13. PubMed ID: 8877443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axolotl pronephric duct migration requires an epidermally derived, laminin 1-containing extracellular matrix and the integrin receptor alpha6beta1.
    Morris AR; Drawbridge J; Steinberg MS
    Development; 2003 Dec; 130(23):5601-8. PubMed ID: 14522870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement, and extracellular matrix as related to migration.
    Spieth J; Keller RE
    J Exp Zool; 1984 Jan; 229(1):91-107. PubMed ID: 6699590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GDNF and GFRalpha-1 are components of the axolotl pronephric duct guidance system.
    Drawbridge J; Meighan CM; Mitchell EA
    Dev Biol; 2000 Dec; 228(1):116-24. PubMed ID: 11087631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemotaxis or adhesion gradient? Pronephric duct elongation does not depend on distant sources of guidance information.
    Zackson SL; Steinberg MS
    Dev Biol; 1987 Dec; 124(2):418-22. PubMed ID: 3678606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cardiac neural crest in Ambystoma mexicanum.
    Bashir NS; Armstrong JB
    Int J Dev Biol; 1999 May; 43(3):269-74. PubMed ID: 10410907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum).
    Epperlein HH; Khattak S; Knapp D; Tanaka EM; Malashichev YB
    PLoS One; 2012; 7(12):e52244. PubMed ID: 23300623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).
    Sefton EM; Piekarski N; Hanken J
    Evol Dev; 2015; 17(3):175-84. PubMed ID: 25963195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation of axolotl tailbud embryos requires GPI-linked proteins and organizer-induced, active, ventral trunk endoderm cell rearrangements.
    Drawbridge J; Steinberg MS
    Dev Biol; 2000 Jul; 223(1):27-37. PubMed ID: 10864458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.