BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33786926)

  • 1. Functional and structural characterization of AntR, an Sb(III) responsive transcriptional repressor.
    Viswanathan T; Chen J; Wu M; An L; Kandavelu P; Sankaran B; Radhakrishnan M; Li M; Rosen BP
    Mol Microbiol; 2021 Aug; 116(2):427-437. PubMed ID: 33786926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comamonas testosteroni antA encodes an antimonite-translocating P-type ATPase.
    An L; Luo X; Wu M; Feng L; Shi K; Wang G; Rosen BP; Li M
    Sci Total Environ; 2021 Feb; 754():142393. PubMed ID: 33254899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
    Shi K; Li C; Rensing C; Dai X; Fan X; Wang G
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel MAs(III)-selective ArsR transcriptional repressor.
    Chen J; Nadar VS; Rosen BP
    Mol Microbiol; 2017 Nov; 106(3):469-478. PubMed ID: 28861914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of arsenic-thiol interactions in metalloregulation of the ars operon.
    Shi W; Dong J; Scott RA; Ksenzenko MY; Rosen BP
    J Biol Chem; 1996 Apr; 271(16):9291-7. PubMed ID: 8621591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803.
    López-Maury L; Florencio FJ; Reyes JC
    J Bacteriol; 2003 Sep; 185(18):5363-71. PubMed ID: 12949088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor.
    Li S; Chen Y; Rosen BP
    Mol Microbiol; 2001 Aug; 41(3):687-96. PubMed ID: 11532136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel antimony metallochaperone AntC in Comamonas testosteroni JL40 and its application in antimony immobilization.
    An L; Xu M; Hong M; Zhao L; Wei A; Luo X; Shi K; Zheng S; Li M
    Sci Total Environ; 2024 Feb; 911():168815. PubMed ID: 38000745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a MarR Subfamily That Regulates Arsenic Resistance Genes.
    Yu Y; Chen J; Li Y; Liang J; Xie Z; Feng R; Alwathnani HA; Rosen BP; Grove A; Chen J; Rensing C
    Appl Environ Microbiol; 2021 Nov; 87(24):e0158821. PubMed ID: 34613763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of ArsR, the repressor of the Staphylococcus xylosus (pSX267) arsenic resistance operon to a sequence with dyad symmetry within the ars promoter.
    Rosenstein R; Nikoleit K; Götz F
    Mol Gen Genet; 1994 Mar; 242(5):566-72. PubMed ID: 8121414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans.
    Moinier D; Slyemi D; Byrne D; Lignon S; Lebrun R; Talla E; Bonnefoy V
    Appl Environ Microbiol; 2014 Oct; 80(20):6413-26. PubMed ID: 25107975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance.
    Busenlehner LS; Pennella MA; Giedroc DP
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):131-43. PubMed ID: 12829264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of two ArsR As(III)-responsive transcriptional repressors: Implications for the mechanism of derepression.
    Prabaharan C; Kandavelu P; Packianathan C; Rosen BP; Thiyagarajan S
    J Struct Biol; 2019 Aug; 207(2):209-217. PubMed ID: 31136796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of metal(loid) binding sites in transcriptional regulators.
    Ordóñez E; Thiyagarajan S; Cook JD; Stemmler TL; Gil JA; Mateos LM; Rosen BP
    J Biol Chem; 2008 Sep; 283(37):25706-25714. PubMed ID: 18591244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation.
    Luo X; Guo J; Lan Y; An L; Zhang X; Shi K; Zheng S; Li M
    Environ Int; 2023 Aug; 178():108040. PubMed ID: 37356310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PadR family transcriptional repressor controls transcription of a trivalent metalloid resistance operon of Azospirillum halopraeferens strain Au 4.
    Zhang J; Wu YF; Tang ST; Chen J; Rosen BP; Zhao FJ
    Environ Microbiol; 2022 Nov; 24(11):5139-5150. PubMed ID: 35880613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni.
    Pruneda-Paz JL; Linares M; Cabrera JE; Genti-Raimondi S
    J Bacteriol; 2004 Mar; 186(5):1430-7. PubMed ID: 14973025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony sensing whole-cell bioreporters derived from ArsR genetic engineering.
    Lee W; Kim H; Jang G; Kim BG; Yoon Y
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2691-2699. PubMed ID: 32002600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel ArsR regulates divergent ars operon in Ensifer adhaerens strain ST2.
    Zhang J; Li YN; Shen J; Nadar VS; Chen J
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37881019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli.
    Xu C; Rosen BP
    J Biol Chem; 1997 Jun; 272(25):15734-8. PubMed ID: 9188467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.