These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33787173)

  • 1. [Role of ATP6V1H gene in bone metabolism].
    Ma JJ; Ying J; Duan XH; Xiao LW; Jin HT; Feng JY
    Zhongguo Gu Shang; 2021 Mar; 34(3):265-8. PubMed ID: 33787173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency of
    Duan X; Liu J; Zheng X; Wang Z; Zhang Y; Hao Y; Yang T; Deng H
    Theranostics; 2016; 6(12):2183-2195. PubMed ID: 27924156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP6V1H Deficiency Impairs Bone Development through Activation of MMP9 and MMP13.
    Zhang Y; Huang H; Zhao G; Yokoyama T; Vega H; Huang Y; Sood R; Bishop K; Maduro V; Accardi J; Toro C; Boerkoel CF; Lyons K; Gahl WA; Duan X; Malicdan MC; Lin S
    PLoS Genet; 2017 Feb; 13(2):e1006481. PubMed ID: 28158191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.
    Li L; Yang S; Zhang Y; Ji D; Jin Z; Duan X
    Biochem Biophys Res Commun; 2018 Jul; 502(1):84-90. PubMed ID: 29782852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sanggenon C Stimulates Osteoblastic Proliferation and Differentiation, Inhibits Osteoclastic Resorption, and Ameliorates Prednisone-Induced Osteoporosis in Zebrafish Model.
    Wang H; Feng T; Guo D; Zhang M; Chen L; Zhou Y
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30217005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic research on senile osteoporosis caused by SIRT6 deficiency.
    Zhang DM; Cui DX; Xu RS; Zhou YC; Zheng LW; Liu P; Zhou XD
    Int J Oral Sci; 2016 Jun; 8(2):84-92. PubMed ID: 27357320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular effects of growth hormone and estrogen on human bone cells.
    Kassem M
    APMIS Suppl; 1997; 71():1-30. PubMed ID: 9357492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of two transcript isoforms of vacuolar ATPase subunit H in mouse and zebrafish.
    Zhao W; Zhang Y; Yang S; Hao Y; Wang Z; Duan X
    Gene; 2018 Jan; 638():66-75. PubMed ID: 28970149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The investigation of energy metabolism in osteoblasts and osteoclasts.
    Shi Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Oct; 39(5):501-509. PubMed ID: 34636196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP6V1H facilitates osteogenic differentiation in MC3T3-E1 cells via Akt/GSK3β signaling pathway.
    Jiang F; Shan H; Pan C; Zhou Z; Cui K; Chen Y; Zhong H; Lin Z; Wang N; Yan L; Yu X
    Organogenesis; 2019; 15(2):43-54. PubMed ID: 31272281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass.
    Wang L; Liu S; Zhao Y; Liu D; Liu Y; Chen C; Karray S; Shi S; Jin Y
    Cell Death Differ; 2015 Oct; 22(10):1654-64. PubMed ID: 25744024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts.
    Kitamura K; Takahira K; Inari M; Satoh Y; Hayakawa K; Tabuchi Y; Ogai K; Nishiuchi T; Kondo T; Mikuni-Takagaki Y; Chen W; Hattori A; Suzuki N
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):74-80. PubMed ID: 23632157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biology of the basic multicellular unit and the pathophysiology of osteoporosis.
    Jilka RL
    Med Pediatr Oncol; 2003 Sep; 41(3):182-5. PubMed ID: 12868116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs in Bone Balance and Osteoporosis.
    Chen J; Qiu M; Dou C; Cao Z; Dong S
    Drug Dev Res; 2015 Aug; 76(5):235-45. PubMed ID: 26218893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irp2 Knockout Causes Osteoporosis by Inhibition of Bone Remodeling.
    Zhou Y; Yang Y; Liu Y; Chang H; Liu K; Zhang X; Chang Y
    Calcif Tissue Int; 2019 Jan; 104(1):70-78. PubMed ID: 30191282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of TNF-α, GSK-3β and RANKL in the occurrence and development of diabetic osteoporosis.
    Qi J; Hu KS; Yang HL
    Int J Clin Exp Pathol; 2015; 8(10):11995-2004. PubMed ID: 26722385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the epigenetics of osteoporosis.
    Letarouilly JG; Broux O; Clabaut A
    Genomics; 2019 Jul; 111(4):793-798. PubMed ID: 29730394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice.
    Yang P; Lv S; Wang Y; Peng Y; Ye Z; Xia Z; Ding G; Cao X; Crane JL
    Bone; 2018 Sep; 114():1-13. PubMed ID: 29800693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation.
    Ali AA; Weinstein RS; Stewart SA; Parfitt AM; Manolagas SC; Jilka RL
    Endocrinology; 2005 Mar; 146(3):1226-35. PubMed ID: 15591153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.