These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33787238)
1. High Internal Phase Emulsions Synergistically Stabilized by Sodium Carboxymethyl Cellulose and Palm Kernel Oil Ethoxylates as an Essential Oil Delivery System. Chen Q; Tai X; Li J; Li C; Guo L J Agric Food Chem; 2021 Apr; 69(14):4191-4203. PubMed ID: 33787238 [TBL] [Abstract][Full Text] [Related]
2. High internal phase emulsions stabilized by whey protein covalently modified with carboxymethyl cellulose: Enhanced environmental stability, storage stability and bioaccessibility. Jiang Z; Luo H; Huangfu Y; Gao Y; Zhang M; Bao Y; Ma W Food Chem; 2024 Mar; 436():137634. PubMed ID: 37847963 [TBL] [Abstract][Full Text] [Related]
3. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions: Stabilization mechanism based on noncovalent interaction. Sun F; Cheng T; Ren S; Yang B; Liu J; Huang Z; Guo Z; Wang Z Int J Biol Macromol; 2024 Jan; 256(Pt 1):128381. PubMed ID: 38000596 [TBL] [Abstract][Full Text] [Related]
4. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin. Okuro PK; Gomes A; Costa ALR; Adame MA; Cunha RL Food Res Int; 2019 Aug; 122():252-262. PubMed ID: 31229079 [TBL] [Abstract][Full Text] [Related]
5. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose. Pang B; Liu H; Liu P; Peng X; Zhang K J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345 [TBL] [Abstract][Full Text] [Related]
6. High Internal Phase Emulsions Stabilized with Polyphenol-Amyloid Fibril Supramolecules for Encapsulation and Protection of Lutein. Leng X; Cheng S; Wu H; Nian Y; Zeng X; Hu B J Agric Food Chem; 2022 Feb; 70(7):2328-2338. PubMed ID: 35133823 [TBL] [Abstract][Full Text] [Related]
7. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs). Zhang T; Xu Z; Cai Z; Guo Q Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420 [TBL] [Abstract][Full Text] [Related]
8. Pea protein/carboxymethyl cellulose complexes prepared using a pH cycle strategy as stabilizers of high internal phase emulsions for 3D printing. Xu L; Wang Y; Yang Y; Qiu C; Jiao A; Jin Z Int J Biol Macromol; 2024 Jun; 269(Pt 2):131967. PubMed ID: 38692528 [TBL] [Abstract][Full Text] [Related]
9. Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin. Chen K; Qian Y; Wu S; Qiu X; Yang D; Lei L Food Funct; 2019 Jun; 10(6):3543-3555. PubMed ID: 31150025 [TBL] [Abstract][Full Text] [Related]
10. Effect of non-covalent binding of tannins to sodium caseinate on the stability of high-internal-phase fish oil emulsions. Wang Y; Huang Y; Sun Y; Zhao M; Liu Z; Shi H; Zhang X; Zhao Y; Xia G; Shen X Int J Biol Macromol; 2024 Oct; 277(Pt 2):134171. PubMed ID: 39067727 [TBL] [Abstract][Full Text] [Related]
11. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils. Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021 [TBL] [Abstract][Full Text] [Related]
12. Synergistic enhancement of loading contents and chemical stability of lycopene distributing both inside and on the oil/water interface. Nian Y; Yuan L; Zhao D; Li C J Food Sci; 2020 Oct; 85(10):3244-3252. PubMed ID: 32869332 [TBL] [Abstract][Full Text] [Related]
13. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature. Li XL; Liu WJ; Xu BC; Zhang B Food Chem; 2022 Feb; 370():130899. PubMed ID: 34509149 [TBL] [Abstract][Full Text] [Related]
14. Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering emulsions. Pan T; Liu C; Wang M; Zhang J Appl Microbiol Biotechnol; 2022 May; 106(9-10):3829-3836. PubMed ID: 35536403 [TBL] [Abstract][Full Text] [Related]
15. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Zhou FZ; Zeng T; Yin SW; Tang CH; Yuan DB; Yang XQ Food Funct; 2018 Feb; 9(2):959-970. PubMed ID: 29322140 [TBL] [Abstract][Full Text] [Related]
17. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988 [TBL] [Abstract][Full Text] [Related]
18. Formulation and stabilization of high internal phase emulsions: Stabilization by cellulose nanocrystals and gelatinized soluble starch. Bai Y; Qiu T; Chen B; Shen C; Yu C; Luo Z; Zhang J; Xu W; Deng Z; Xu J; Zhang H Carbohydr Polym; 2023 Jul; 312():120693. PubMed ID: 37059515 [TBL] [Abstract][Full Text] [Related]
19. Effect of four plant oils on the stability of high internal phase Pickering emulsions stabilized by ovalbumin-tannic acid complex. Xiong Y; Chen Y; Yi X; Li Z; Luo Y Int J Biol Macromol; 2022 Dec; 222(Pt B):1633-1641. PubMed ID: 36243162 [TBL] [Abstract][Full Text] [Related]
20. Carboxymethyl cellulose/okara protein influencing microstructure, rheological properties and stability of O/W emulsions. Cai Y; Huang L; Tao X; Su J; Chen B; Zhao M; Zhao Q; Van der Meeren P J Sci Food Agric; 2021 Jul; 101(9):3685-3692. PubMed ID: 33301177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]