These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33787238)

  • 21. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion.
    Zhou L; Jiang J; Feng F; Wang J; Cai J; Xing L; Zhou G; Zhang W
    Carbohydr Polym; 2023 Jun; 309():120679. PubMed ID: 36906362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions.
    Liang C; Liu Q; Xu Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20631-9. PubMed ID: 26302364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane.
    Wu J; Guan X; Wang C; Ngai T; Lin W
    J Colloid Interface Sci; 2022 Mar; 610():994-1004. PubMed ID: 34865740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals.
    Capron I; Cathala B
    Biomacromolecules; 2013 Feb; 14(2):291-6. PubMed ID: 23289355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the Viability of Lactobacillus plantarum as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels.
    Su J; Wang X; Li W; Chen L; Zeng X; Huang Q; Hu B
    J Agric Food Chem; 2018 Nov; 66(46):12335-12343. PubMed ID: 30380846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by
    Cao Y; Dai Y; Lu X; Li R; Zhou W; Li J; Zheng B
    Front Nutr; 2021; 8():770218. PubMed ID: 34888338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose nanocrystals based clove oil Pickering emulsion for enhanced antibacterial activity.
    Yu H; Huang G; Ma Y; Liu Y; Huang X; Zheng Q; Yue P; Yang M
    Int J Biol Macromol; 2021 Feb; 170():24-32. PubMed ID: 33333094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Particle Size on Droplet Coalescence in Solid-Stabilized High Internal Phase Emulsions.
    Kaganyuk M; Mohraz A
    Langmuir; 2019 Oct; 35(39):12807-12816. PubMed ID: 31484479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance.
    Huang C; Sun F; Ma X; Gao C; Yang N; Nishinari K
    Carbohydr Polym; 2022 Jul; 288():119277. PubMed ID: 35450663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in Vitro Digestion Study.
    Tan H; Zhao L; Tian S; Wen H; Gou X; Ngai T
    J Agric Food Chem; 2017 Feb; 65(4):900-907. PubMed ID: 28064487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability.
    Gao Y; Wu X; McClements DJ; Cheng C; Xie Y; Liang R; Liu J; Zou L; Liu W
    Food Chem; 2022 Aug; 386():132787. PubMed ID: 35344718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High internal phase emulsions stabilized by native and heat-treated lactoferrin-carboxymethyl chitosan complexes: Comparison of molecular and granular emulsifiers.
    Zhao S; Cui F; Ma C; Julian McClements D; Liu X; Liu F
    Food Chem; 2022 Feb; 370():130507. PubMed ID: 34619605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions.
    Martins D; Estevinho B; Rocha F; Dourado F; Gama M
    Carbohydr Polym; 2020 Feb; 230():115657. PubMed ID: 31887925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Carboxymethyl Cellulose on the Stability, Rheological Property, and
    Zhang W; Hao J; Yuan Y; Xu D
    Front Nutr; 2022; 9():878725. PubMed ID: 35479744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a High Internal Phase Emulsion of Antarctic Krill Oil Diluted by Soybean Oil Using Casein as a Co-Emulsifier.
    Liu Y; Fu D; Bi A; Wang S; Li X; Xu X; Song L
    Foods; 2021 Apr; 10(5):. PubMed ID: 33921961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.
    Zhu Y; Wang W; Zheng Y; Wang F; Wang A
    Carbohydr Polym; 2016 Apr; 140():51-8. PubMed ID: 26876827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles.
    Jia Y; Kong L; Zhang B; Fu X; Huang Q
    Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.