These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33787238)
21. In vitro digestibility and release of a mango peel extract encapsulated within water-in-oil-in-water (W Velderrain-Rodríguez GR; Salvia-Trujillo L; Wall-Medrano A; González-Aguilar GA; Martín-Belloso O Food Funct; 2019 Sep; 10(9):6110-6120. PubMed ID: 31495859 [TBL] [Abstract][Full Text] [Related]
22. W/O high internal phase emulsions (HIPEs) stabilized by a piperazinyl based emulsifier. Jiang F; Gao D; Feng X; Pan J; Pu W Soft Matter; 2021 Nov; 17(43):9859-9865. PubMed ID: 34723315 [TBL] [Abstract][Full Text] [Related]
23. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions. Huan Y; Zhang S; Vardhanabhuti B J Dairy Sci; 2016 May; 99(5):3305-3315. PubMed ID: 26947286 [TBL] [Abstract][Full Text] [Related]
24. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Zhou L; Jiang J; Feng F; Wang J; Cai J; Xing L; Zhou G; Zhang W Carbohydr Polym; 2023 Jun; 309():120679. PubMed ID: 36906362 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions. Liang C; Liu Q; Xu Z ACS Appl Mater Interfaces; 2015 Sep; 7(37):20631-9. PubMed ID: 26302364 [TBL] [Abstract][Full Text] [Related]
26. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. Wu J; Guan X; Wang C; Ngai T; Lin W J Colloid Interface Sci; 2022 Mar; 610():994-1004. PubMed ID: 34865740 [TBL] [Abstract][Full Text] [Related]
27. Formation of Natural Egg Yolk Granule Stabilized Pickering High Internal Phase Emulsions by Means of NaCl Ionic Strength and pH Change. Mi S; Xia M; Zhang X; Liu J; Cai Z Foods; 2022 Jan; 11(2):. PubMed ID: 35053961 [TBL] [Abstract][Full Text] [Related]
28. Effects of different oil fractions and tannic acid concentrations on konjac glucomannan-stabilized emulsions. Long M; Ren Y; Li Z; Yin C; Sun J Int J Biol Macromol; 2024 Apr; 265(Pt 1):130723. PubMed ID: 38467227 [TBL] [Abstract][Full Text] [Related]
29. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions. Wang W; Ji S; Xia Q Carbohydr Polym; 2024 Jun; 334():122041. PubMed ID: 38553238 [TBL] [Abstract][Full Text] [Related]
30. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Capron I; Cathala B Biomacromolecules; 2013 Feb; 14(2):291-6. PubMed ID: 23289355 [TBL] [Abstract][Full Text] [Related]
31. Encapsulation of Vitamin D Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344 [TBL] [Abstract][Full Text] [Related]
32. Enhancing the Viability of Lactobacillus plantarum as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels. Su J; Wang X; Li W; Chen L; Zeng X; Huang Q; Hu B J Agric Food Chem; 2018 Nov; 66(46):12335-12343. PubMed ID: 30380846 [TBL] [Abstract][Full Text] [Related]
33. High internal phase emulsions stabilized by alkaline-extracted walnut protein isolates and their application in food 3D printing. Huang X; Yan C; Xu Y; Ling M; He C; Zhou Z Food Res Int; 2023 Jul; 169():112858. PubMed ID: 37254432 [TBL] [Abstract][Full Text] [Related]
34. Improvement of processable properties of plant-based high internal phase emulsions by mung bean protein isolate based on pH shift treatment. Wen L; Dai H; Li S; Liang H; Li B; Li J J Sci Food Agric; 2024 Aug; 104(11):6966-6976. PubMed ID: 38619073 [TBL] [Abstract][Full Text] [Related]
35. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Cao Y; Dai Y; Lu X; Li R; Zhou W; Li J; Zheng B Front Nutr; 2021; 8():770218. PubMed ID: 34888338 [TBL] [Abstract][Full Text] [Related]
36. Cellulose nanocrystals based clove oil Pickering emulsion for enhanced antibacterial activity. Yu H; Huang G; Ma Y; Liu Y; Huang X; Zheng Q; Yue P; Yang M Int J Biol Macromol; 2021 Feb; 170():24-32. PubMed ID: 33333094 [TBL] [Abstract][Full Text] [Related]
37. Impact of Particle Size on Droplet Coalescence in Solid-Stabilized High Internal Phase Emulsions. Kaganyuk M; Mohraz A Langmuir; 2019 Oct; 35(39):12807-12816. PubMed ID: 31484479 [TBL] [Abstract][Full Text] [Related]
38. Construction and characterization of sesame meal-stabilized Pickering high internal phase emulsions and their application in cake production. Wang X; Yu H; Hu Z; Zhang C; Liu B; Liu H; Ma Y Int J Biol Macromol; 2024 Nov; 281(Pt 2):136364. PubMed ID: 39374722 [TBL] [Abstract][Full Text] [Related]
39. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance. Huang C; Sun F; Ma X; Gao C; Yang N; Nishinari K Carbohydr Polym; 2022 Jul; 288():119277. PubMed ID: 35450663 [TBL] [Abstract][Full Text] [Related]
40. Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in Vitro Digestion Study. Tan H; Zhao L; Tian S; Wen H; Gou X; Ngai T J Agric Food Chem; 2017 Feb; 65(4):900-907. PubMed ID: 28064487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]