These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33787248)

  • 1. An Improved CRISPR Interference Tool to Engineer
    DeLorenzo DM; Diao J; Carr R; Hu Y; Moon TS
    ACS Synth Biol; 2021 Apr; 10(4):786-798. PubMed ID: 33787248
    [No Abstract]   [Full Text] [Related]  

  • 2. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus.
    Kong L; Xiong Z; Song X; Xia Y; Ai L
    J Dairy Sci; 2022 Aug; 105(8):6499-6512. PubMed ID: 35691751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630.
    DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS
    ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli.
    Ting WW; Ng IS
    J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in
    DeLorenzo DM; Moon TS
    ACS Synth Biol; 2019 Aug; 8(8):1921-1930. PubMed ID: 31362487
    [No Abstract]   [Full Text] [Related]  

  • 12. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313.
    Ganguly J; Martin-Pascual M; van Kranenburg R
    Microb Biotechnol; 2020 Mar; 13(2):339-349. PubMed ID: 31802632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced protein and biochemical production using CRISPRi-based growth switches.
    Li S; Jendresen CB; Grünberger A; Ronda C; Jensen SI; Noack S; Nielsen AT
    Metab Eng; 2016 Nov; 38():274-284. PubMed ID: 27647432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 advances engineering of microbial cell factories.
    Jakočiūnas T; Jensen MK; Keasling JD
    Metab Eng; 2016 Mar; 34():44-59. PubMed ID: 26707540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Type I-E CRISPR-Based Programmable Repression System for Fine-Tuning Metabolic Flux toward D-Pantothenic Acid in
    Mao C; Zheng H; Chen Y; Yuan P; Sun D
    ACS Synth Biol; 2024 Aug; 13(8):2480-2491. PubMed ID: 39083228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic toolkits for engineering Rhodococcus species with versatile applications.
    Liang Y; Yu H
    Biotechnol Adv; 2021; 49():107748. PubMed ID: 33823269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.