These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33787263)

  • 21. 3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels.
    Hsiao LC; Badruddoza AZ; Cheng LC; Doyle PS
    Soft Matter; 2017 Feb; 13(5):921-929. PubMed ID: 28094392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices.
    Štumberger G; Vihar B
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30545119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber.
    Tan WS; Shi Q; Chen S; Bin Juhari MA; Song J
    Biomed Eng Lett; 2020 Nov; 10(4):517-532. PubMed ID: 33194245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry.
    A S; Lyu J; Johnson M; Creagh-Flynn J; Zhou D; Lara-Sáez I; Xu Q; Tai H; Wang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38918-38924. PubMed ID: 32805952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photo-tunable hydrogel mechanical heterogeneity informed by predictive transport kinetics model.
    Higgins CI; Killgore JP; DelRio FW; Bryant SJ; McLeod RR
    Soft Matter; 2020 May; 16(17):4131-4141. PubMed ID: 32202291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Volumetric 3D Printing of Endoskeletal Soft Robots.
    Darkes-Burkey C; Shepherd RF
    Adv Mater; 2024 Jun; ():e2402217. PubMed ID: 38872253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing.
    Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing bioink shape fidelity to aid material development in 3D bioprinting.
    Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J
    Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative optimization of solid freeform deposition of aqueous hydrogels.
    Kang KH; Hockaday LA; Butcher JT
    Biofabrication; 2013 Sep; 5(3):035001. PubMed ID: 23636927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoplastic Matrix Materials for Embedded 3D Printing.
    Grosskopf AK; Truby RL; Kim H; Perazzo A; Lewis JA; Stone HA
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23353-23361. PubMed ID: 29493215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of High-Resolution 3D Inkjet-Printing of Optical Freeform Surfaces Using Digital Twins.
    Sieber I; Thelen R; Gengenbach U
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.
    Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q
    J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printing of tablets using inkjet with UV photoinitiation.
    Clark EA; Alexander MR; Irvine DJ; Roberts CJ; Wallace MJ; Sharpe S; Yoo J; Hague RJM; Tuck CJ; Wildman RD
    Int J Pharm; 2017 Aug; 529(1-2):523-530. PubMed ID: 28673860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printability Assessment of Poly(octamethylene maleate (anhydride) citrate) and Poly(ethylene glycol) Diacrylate Copolymers for Biomedical Applications.
    Wales DJ; Keshavarz M; Howe C; Yeatman E
    ACS Appl Polym Mater; 2022 Aug; 4(8):5457-5470. PubMed ID: 35991303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication.
    Jin Y; Chai W; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and performance of a 3D-printable poly(ethylene glycol) diacrylate hydrogel suitable for enzyme entrapment and long-term biocatalytic applications.
    Schmieg B; Schimek A; Franzreb M
    Eng Life Sci; 2018 Sep; 18(9):659-667. PubMed ID: 32624946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.