These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33787397)
1. Applying Laplace Adomian decomposition method (LADM) for solving a model of Covid-19. Nave O; Shemesh U; HarTuv I Comput Methods Biomech Biomed Engin; 2021 Nov; 24(14):1618-1628. PubMed ID: 33787397 [TBL] [Abstract][Full Text] [Related]
2. SDIQR mathematical modelling for COVID-19 of Odisha associated with influx of migrants based on Laplace Adomian decomposition technique. Sahu I; Jena SR Model Earth Syst Environ; 2023 Mar; ():1-10. PubMed ID: 37361701 [TBL] [Abstract][Full Text] [Related]
3. Designing a novel fractional order mathematical model for COVID-19 incorporating lockdown measures. Adel W; Günerhan H; Nisar KS; Agarwal P; El-Mesady A Sci Rep; 2024 Feb; 14(1):2926. PubMed ID: 38316837 [TBL] [Abstract][Full Text] [Related]
4. Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator. Rahman MU; Ahmad S; Matoog RT; Alshehri NA; Khan T Chaos Solitons Fractals; 2021 Sep; 150():111121. PubMed ID: 34108819 [TBL] [Abstract][Full Text] [Related]
5. BCG and IL - 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method-stability analysis. Nave O; Hareli S; Elbaz M; Iluz IH; Bunimovich-Mendrazitsky S Math Biosci Eng; 2019 Jun; 16(5):5346-5379. PubMed ID: 31499716 [TBL] [Abstract][Full Text] [Related]
6. Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. Thabet STM; Abdo MS; Shah K Adv Differ Equ; 2021; 2021(1):184. PubMed ID: 33777126 [TBL] [Abstract][Full Text] [Related]
7. Qualitative Analysis of a Mathematical Model in the Time of COVID-19. Shah K; Abdeljawad T; Mahariq I; Jarad F Biomed Res Int; 2020; 2020():5098598. PubMed ID: 32596319 [TBL] [Abstract][Full Text] [Related]
8. Analytical and qualitative investigation of COVID-19 mathematical model under fractional differential operator. Shah K; Sher M; Rabai'ah H; Ahmadian A; Salahshour S; Pansera BA Math Methods Appl Sci; 2021 Aug; ():. PubMed ID: 34908635 [TBL] [Abstract][Full Text] [Related]
9. Application of Laplace-Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Shah R; Khan H; Arif M; Kumam P Entropy (Basel); 2019 Mar; 21(4):. PubMed ID: 33267049 [TBL] [Abstract][Full Text] [Related]
10. The Study for Synchronization between Two Coupled FitzHugh-Nagumo Neurons Based on the Laplace Transform and the Adomian Decomposition Method. Zhen B; Song Z Neural Plast; 2021; 2021():6657835. PubMed ID: 33981336 [TBL] [Abstract][Full Text] [Related]
11. Θ-SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition. Nave O; Hartuv I; Shemesh U PeerJ; 2020; 8():e10019. PubMed ID: 33005495 [TBL] [Abstract][Full Text] [Related]
12. The Fractional Differential Model of HIV-1 Infection of CD4 Lichae BH; Biazar J; Ayati Z Comput Math Methods Med; 2019; 2019():4059549. PubMed ID: 30728851 [TBL] [Abstract][Full Text] [Related]
14. On solving system of differential-algebraic equations using adomian decomposition method. Thota S; P S F1000Res; 2023; 12():1337. PubMed ID: 38784641 [TBL] [Abstract][Full Text] [Related]
15. A hybrid yang transform adomian decomposition method for solving time-fractional nonlinear partial differential equation. Bekela AS; Deresse AT BMC Res Notes; 2024 Aug; 17(1):226. PubMed ID: 39148140 [TBL] [Abstract][Full Text] [Related]
16. Solution of nonlinear higher-index Hessenberg DAEs by Adomian polynomials and differential transform method. Benhammouda B Springerplus; 2015; 4():648. PubMed ID: 26543782 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a time-fractional COVID-19 mathematical model with singular kernel. Adnan ; Ali A; Ur Rahmamn M; Shah Z; Kumam P Adv Contin Discret Model; 2022; 2022(1):34. PubMed ID: 35462615 [TBL] [Abstract][Full Text] [Related]
18. A mathematical model for human-to-human transmission of COVID-19: a case study for Turkey's data. Cengizci S; Cengizci AD; Uğur Ö Math Biosci Eng; 2021 Nov; 18(6):9787-9805. PubMed ID: 34814369 [TBL] [Abstract][Full Text] [Related]
19. Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Joshi H; Jha BK; Yavuz M Math Biosci Eng; 2023 Jan; 20(1):213-240. PubMed ID: 36650763 [TBL] [Abstract][Full Text] [Related]
20. The Adomian decomposition method for solving a moving boundary problem arising from the diffusion of oxygen in absorbing tissue. Bougoffa L ScientificWorldJournal; 2014; 2014():579628. PubMed ID: 25165743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]