BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 33787481)

  • 41. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Balancing of B6 Vitamers Is Essential for Plant Development and Metabolism in Arabidopsis.
    Colinas M; Eisenhut M; Tohge T; Pesquera M; Fernie AR; Weber AP; Fitzpatrick TB
    Plant Cell; 2016 Feb; 28(2):439-53. PubMed ID: 26858304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis.
    Herrero S; González E; Gillikin JW; Vélëz H; Daub ME
    Plant Mol Biol; 2011 May; 76(1-2):157-69. PubMed ID: 21533842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of YbhA as the pyridoxal 5'-phosphate (PLP) phosphatase in Escherichia coli: Importance of PLP homeostasis on the bacterial growth.
    Sugimoto R; Saito N; Shimada T; Tanaka K
    J Gen Appl Microbiol; 2018 Jan; 63(6):362-368. PubMed ID: 29187681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vitamin B6 metabolism in microbes and approaches for fermentative production.
    Rosenberg J; Ischebeck T; Commichau FM
    Biotechnol Adv; 2017; 35(1):31-40. PubMed ID: 27890703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and mechanism of Escherichia coli pyridoxine 5'-phosphate oxidase.
    di Salvo ML; Safo MK; Musayev FN; Bossa F; Schirch V
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):76-82. PubMed ID: 12686112
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasma vitamin B6 vitamers before and after oral vitamin B6 treatment: a randomized placebo-controlled study.
    Bor MV; Refsum H; Bisp MR; Bleie Ø; Schneede J; Nordrehaug JE; Ueland PM; Nygard OK; Nexø E
    Clin Chem; 2003 Jan; 49(1):155-61. PubMed ID: 12507972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Drug-pyridoxal phosphate interactions.
    Ebadi M; Gessert CF; Al-Sayegh A
    Q Rev Drug Metab Drug Interact; 1982; 4(4):289-331. PubMed ID: 6087425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitamin B(6) salvage enzymes: mechanism, structure and regulation.
    di Salvo ML; Contestabile R; Safo MK
    Biochim Biophys Acta; 2011 Nov; 1814(11):1597-608. PubMed ID: 21182989
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation between pyridoxal-5'-phosphate levels and the percentage activation of aspartate aminotransferase enzyme in haemolysate and plasma during in vitro incubation studies with different B6 vitamers.
    Vermaak WJ; Barnard HC; van Dalen EM; Potgieter GM
    Enzyme; 1986; 35(4):215-24. PubMed ID: 3780657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disruption of the plr1+ gene encoding pyridoxal reductase of Schizosaccharomyces pombe.
    Morita T; Takegawa K; Yagi T
    J Biochem; 2004 Feb; 135(2):225-30. PubMed ID: 15047724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vitamin B6 and the immunity in kidney transplant recipients.
    Jankowska M; Marszałł M; Dębska-Ślizień A; Carrero JJ; Lindholm B; Czarnowski W; Rutkowski B; Trzonkowski P
    J Ren Nutr; 2013 Jan; 23(1):57-64. PubMed ID: 22445054
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine.
    Commichau FM; Alzinger A; Sande R; Bretzel W; Meyer FM; Chevreux B; Wyss M; Hohmann HP; Prágai Z
    Metab Eng; 2014 Sep; 25():38-49. PubMed ID: 24972371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.
    Cellini B; Montioli R; Oppici E; Astegno A; Voltattorni CB
    Clin Biochem; 2014 Feb; 47(3):158-65. PubMed ID: 24355692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomedical aspects of pyridoxal 5'-phosphate availability.
    di Salvo ML; Safo MK; Contestabile R
    Front Biosci (Elite Ed); 2012 Jan; 4(3):897-913. PubMed ID: 22201923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vitamin B6 metabolism by human liver.
    Merrill AH; Henderson JM
    Ann N Y Acad Sci; 1990; 585():110-7. PubMed ID: 2192606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A subfamily of bacterial ribokinases utilizes a hemithioacetal for pyridoxal phosphate salvage.
    Nodwell MB; Koch MF; Alte F; Schneider S; Sieber SA
    J Am Chem Soc; 2014 Apr; 136(13):4992-9. PubMed ID: 24601602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination and evaluation of in vitro bioaccessibility of the pyridoxal, pyridoxine, and pyridoxamine forms of vitamin B
    Yaman M; Mızrak ÖF
    Food Chem; 2019 Nov; 298():125042. PubMed ID: 31261006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of enzymes involved in the interconversions of different forms of vitamin B(6) in tobacco leaves.
    Huang S; Zeng H; Zhang J; Wei S; Huang L
    Plant Physiol Biochem; 2011 Nov; 49(11):1299-305. PubMed ID: 22000053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability of pyridoxal-5-phosphate semicarbazone: applications in plasma vitamin B6 analysis and population surveys of vitamin B6 nutritional status.
    Ubbink JB; Serfontein WJ; de Villiers LS
    J Chromatogr; 1985 Aug; 342(2):277-84. PubMed ID: 4055950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.