These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33787873)

  • 21. Single Cell Self-Paced Clustering with Transcriptome Sequencing Data.
    Zhao P; Xu Z; Chen J; Ren Y; King I
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.
    Qiao TJ; Liu JX; Shang J; Yuan S; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2023 May; 27(5):2575-2584. PubMed ID: 37027680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.
    Zhu X; Li HD; Xu Y; Guo L; Wu FX; Duan G; Wang J
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data.
    Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles.
    Mallik S; Zhao Z
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31412637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation.
    Yang Q; Xu Z; Zhou W; Wang P; Jiang Q; Juan L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37225419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scDAC: deep adaptive clustering of single-cell transcriptomic data with coupled autoencoder and Dirichlet process mixture model.
    An S; Shi J; Liu R; Chen Y; Wang J; Hu S; Xia X; Dong G; Bo X; He Z; Ying X
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. scHOIS: Determining Cell Heterogeneity Through Hierarchical Clustering Based on Optimal Imputation Strategy.
    Cheng X; Yan C; Jiang H; Qiu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1431-1444. PubMed ID: 37815942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering.
    Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new and effective two-step clustering approach for single cell RNA sequencing data.
    Li R; Guan J; Wang Z; Zhou S
    BMC Genomics; 2023 Nov; 23(Suppl 6):864. PubMed ID: 37946133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.