These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33788254)
1. Probabilistic model by Bayesian network for the prediction of antibody glycosylation in perfusion and fed-batch cell cultures. Zhang L; Wang M; Castan A; Hjalmarsson H; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3447-3459. PubMed ID: 33788254 [TBL] [Abstract][Full Text] [Related]
2. Glycan Residues Balance Analysis - GReBA: A novel model for the N-linked glycosylation of IgG produced by CHO cells. Zhang L; Wang M; Castan A; Stevenson J; Chatzissavidou N; Hjalmarsson H; Vilaplana F; Chotteau V Metab Eng; 2020 Jan; 57():118-128. PubMed ID: 31539564 [TBL] [Abstract][Full Text] [Related]
3. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838 [TBL] [Abstract][Full Text] [Related]
4. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Qin J; Wu X; Xia Z; Huang Z; Zhang Y; Wang Y; Fu Q; Zheng C Appl Microbiol Biotechnol; 2019 Feb; 103(3):1217-1229. PubMed ID: 30554388 [TBL] [Abstract][Full Text] [Related]
5. Dynamic multiscale metabolic network modeling of Chinese hamster ovary cell metabolism integrating N-linked glycosylation in industrial biopharmaceutical manufacturing. Erklavec Zajec V; Novak U; Kastelic M; Japelj B; Lah L; Pohar A; Likozar B Biotechnol Bioeng; 2021 Jan; 118(1):397-411. PubMed ID: 32970321 [TBL] [Abstract][Full Text] [Related]
7. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747 [TBL] [Abstract][Full Text] [Related]
8. Control of IgG glycosylation in CHO cell perfusion cultures by GReBA mathematical model supported by a novel targeted feed, TAFE. Zhang L; Schwarz H; Wang M; Castan A; Hjalmarsson H; Chotteau V Metab Eng; 2021 May; 65():135-145. PubMed ID: 33161144 [TBL] [Abstract][Full Text] [Related]
9. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
10. Perfusion Cell Culture Decreases Process and Product Heterogeneity in a Head-to-Head Comparison With Fed-Batch. Walther J; Lu J; Hollenbach M; Yu M; Hwang C; McLarty J; Brower K Biotechnol J; 2019 Feb; 14(2):e1700733. PubMed ID: 29851298 [TBL] [Abstract][Full Text] [Related]
11. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Kildegaard HF; Fan Y; Sen JW; Larsen B; Andersen MR Biotechnol Bioeng; 2016 Feb; 113(2):359-66. PubMed ID: 26222761 [TBL] [Abstract][Full Text] [Related]
12. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468 [TBL] [Abstract][Full Text] [Related]
13. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522 [TBL] [Abstract][Full Text] [Related]
14. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
16. Model-based optimization of antibody galactosylation in CHO cell culture. Kotidis P; Jedrzejewski P; Sou SN; Sellick C; Polizzi K; Del Val IJ; Kontoravdi C Biotechnol Bioeng; 2019 Jul; 116(7):1612-1626. PubMed ID: 30802295 [TBL] [Abstract][Full Text] [Related]
17. Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures. Hutter S; Villiger TK; Brühlmann D; Stettler M; Broly H; Soos M; Gunawan R Metab Eng; 2017 Sep; 43(Pt A):9-20. PubMed ID: 28754360 [TBL] [Abstract][Full Text] [Related]
18. Differential gene expression of a feed-spiked super-producing CHO cell line. Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452 [TBL] [Abstract][Full Text] [Related]
19. A class of low-cost alternatives to kifunensine for increasing high mannose N-linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells. Brantley TJ; Mitchelson FG; Khattak SF Biotechnol Prog; 2021 Jan; 37(1):e3076. PubMed ID: 32888259 [TBL] [Abstract][Full Text] [Related]
20. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]