These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33788313)

  • 1. Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks.
    Zhu CN; Li CY; Wang H; Hong W; Huang F; Zheng Q; Wu ZL
    Adv Mater; 2021 May; 33(18):e2008057. PubMed ID: 33788313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequentially Controlled Deformations of Patterned Hydrogels into 3D Configurations with Multilevel Structures.
    Ma P; Niu B; Lin J; Kang T; Qian J; Wu ZL; Zheng Q
    Macromol Rapid Commun; 2019 Feb; 40(3):e1800681. PubMed ID: 30417474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Tough Metallosupramolecular Hydrogel Films with Kirigami Structures for Compliant Soft Electronics.
    Yu HC; Hao XP; Zhang CW; Zheng SY; Du M; Liang S; Wu ZL; Zheng Q
    Small; 2021 Oct; 17(41):e2103836. PubMed ID: 34514699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-Induced Controllable Thin-Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators.
    Yang Y; Wang T; Tian F; Wang X; Hu Y; Xia X; Xu S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2000749. PubMed ID: 34128581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Encryption in a Shape-Memory Hydrogel with Tunable Fluorescence and Reconfigurable Architecture.
    Zhu CN; Bai T; Wang H; Ling J; Huang F; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2021 Jul; 33(29):e2102023. PubMed ID: 34081366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halloysite nanotubes as nano-support matrix for programming the photo/H
    Wang Y; Ba X; Zhang B; Wang Y; Wu Y; Zhang H
    J Colloid Interface Sci; 2024 Mar; 657():344-351. PubMed ID: 38043236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.
    Wang ZJ; Hong W; Wu ZL; Zheng Q
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15974-15978. PubMed ID: 29105231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations.
    Yao X; Chen H; Qin H; Cong HP
    Small Methods; 2024 Apr; 8(4):e2300414. PubMed ID: 37365950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodirected Morphing Structures of Nanocomposite Shape Memory Hydrogel with High Stiffness and Toughness.
    Dai CF; Du C; Xue Y; Zhang XN; Zheng SY; Liu K; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43631-43640. PubMed ID: 31664813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoregulated Gradient Structure and Programmable Mechanical Performances of Tough Hydrogels with a Hydrogen-Bond Network.
    Dai CF; Zhang XN; Du C; Frank A; Schmidt HW; Zheng Q; Wu ZL
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53376-53384. PubMed ID: 33170639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering viscoelastic mismatch for temporal morphing of tough supramolecular hydrogels.
    Hao XP; Zhang CW; Hong W; Meng M; Hou LX; Du M; Zheng Q; Wu ZL
    Mater Horiz; 2023 Feb; 10(2):432-442. PubMed ID: 36606414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Cross-Linked Centers.
    Wang J; Li T; Chen F; Zhou D; Li B; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800143. PubMed ID: 29749078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations.
    Bi Y; Du X; He P; Wang C; Liu C; Guo W
    Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films.
    Hu H; Huang C; Galluzzi M; Ye Q; Xiao R; Yu X; Du X
    Research (Wash D C); 2021; 2021():9786128. PubMed ID: 34195615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks.
    Accardo JV; Kalow JA
    Chem Sci; 2018 Jul; 9(27):5987-5993. PubMed ID: 30079213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.