These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene. Rodrigo D; Limaj O; Janner D; Etezadi D; García de Abajo FJ; Pruneri V; Altug H Science; 2015 Jul; 349(6244):165-8. PubMed ID: 26160941 [TBL] [Abstract][Full Text] [Related]
5. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067 [TBL] [Abstract][Full Text] [Related]
6. Directing fluorescence with plasmonic and photonic structures. Dutta Choudhury S; Badugu R; Lakowicz JR Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus-Graphene Architecture. Li K; Li L; Xu N; Peng X; Zhou Y; Yuan Y; Song J; Qu J Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545230 [TBL] [Abstract][Full Text] [Related]
8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
9. Earth Abundant Iron-Rich N-Doped Graphene Based Spacer and Cavity Materials for Surface Plasmon-Coupled Emission Enhancements. Srinivasan V; Vernekar D; Jaiswal G; Jagadeesan D; Ramamurthy SS ACS Appl Mater Interfaces; 2016 May; 8(19):12324-9. PubMed ID: 27128348 [TBL] [Abstract][Full Text] [Related]
10. Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs. Baryshev AV; Merzlikin AM Appl Opt; 2014 May; 53(14):3142-6. PubMed ID: 24922037 [TBL] [Abstract][Full Text] [Related]
11. FEM analysis of a λ Seyyedmasoumian S; Attariabad A; Farmani A Appl Opt; 2022 Jan; 61(1):120-125. PubMed ID: 35200803 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive graphene biosensors based on surface plasmon resonance. Wu L; Chu HS; Koh WS; Li EP Opt Express; 2010 Jul; 18(14):14395-400. PubMed ID: 20639924 [TBL] [Abstract][Full Text] [Related]
16. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Zhang J; Sun Y; Wu Q; Gao Y; Zhang H; Bai Y; Song D Colloids Surf B Biointerfaces; 2014 Apr; 116():211-8. PubMed ID: 24480068 [TBL] [Abstract][Full Text] [Related]
17. Cellphone Monitoring of Multi-Qubit Emission Enhancements from Pd-Carbon Plasmonic Nanocavities in Tunable Coupling Regimes with Attomolar Sensitivity. Srinivasan V; Manne AK; Patnaik SG; Ramamurthy SS ACS Appl Mater Interfaces; 2016 Sep; 8(35):23281-8. PubMed ID: 27529116 [TBL] [Abstract][Full Text] [Related]
18. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. Bhaskar S; Rai A; Ganesh KM; Reddy R; Reddy N; Ramamurthy SS Langmuir; 2022 Oct; 38(39):12035-12049. PubMed ID: 36122249 [TBL] [Abstract][Full Text] [Related]
19. Nanophotonic biosensors harnessing van der Waals materials. Oh SH; Altug H; Jin X; Low T; Koester SJ; Ivanov AP; Edel JB; Avouris P; Strano MS Nat Commun; 2021 Jun; 12(1):3824. PubMed ID: 34158483 [TBL] [Abstract][Full Text] [Related]
20. Superior Resonant Nanocavities Engineering on the Photonic Crystal-Coupled Emission Platform for the Detection of Femtomolar Iodide and Zeptomolar Cortisol. Bhaskar S; Singh AK; Das P; Jana P; Kanvah S; Bhaktha B N S; Ramamurthy SS ACS Appl Mater Interfaces; 2020 Jul; 12(30):34323-34336. PubMed ID: 32597162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]