These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33788586)

  • 1. Cega: a single particle segmentation algorithm to identify moving particles in a noisy system.
    Masucci EM; Relich PK; Ostap EM; Holzbaur ELF; Lakadamyali M
    Mol Biol Cell; 2021 Apr; 32(9):931-941. PubMed ID: 33788586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of fan-shaped tracker for single particle tracking.
    Jin L; Zhao F; Lin W; Zhou X; Kuang C; Nedzved A; Ablameyko S; Liu X; Xu Y
    Microsc Res Tech; 2020 Sep; 83(9):1056-1065. PubMed ID: 32324946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility.
    Lund FW; Wüstner D
    J Microsc; 2013 Nov; 252(2):169-88. PubMed ID: 24102535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint.
    Xiao C; Smith ZJ; Chu K
    J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking single particles and elongated filaments with nanometer precision.
    Ruhnow F; Zwicker D; Diez S
    Biophys J; 2011 Jun; 100(11):2820-8. PubMed ID: 21641328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images.
    Lin Y; Andersson SB
    PLoS One; 2021; 16(5):e0243115. PubMed ID: 34019541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.
    Yildiz A; Vale RD
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086355. PubMed ID: 26330626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules.
    Kapoor V; Hirst WG; Hentschel C; Preibisch S; Reber S
    Sci Rep; 2019 Mar; 9(1):3794. PubMed ID: 30846705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy.
    Kou L; Jin L; Lei H; Hu C; Li H; Hu X; Hu X
    J Microsc; 2019 Mar; 273(3):178-188. PubMed ID: 30489640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitotic kinesin-14 KlpA contains a context-dependent directionality switch.
    Popchock AR; Tseng KF; Wang P; Karplus PA; Xiang X; Qiu W
    Nat Commun; 2017 Jan; 8():13999. PubMed ID: 28051135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting microtubule networks from superresolution single-molecule localization microscopy data.
    Zhang Z; Nishimura Y; Kanchanawong P
    Mol Biol Cell; 2017 Jan; 28(2):333-345. PubMed ID: 27852898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.
    Bohner G; Gustafsson N; Cade NI; Maurer SP; Griffin LD; Surrey T
    J Microsc; 2016 Jan; 261(1):67-78. PubMed ID: 26444439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating single molecule localization microscopy through parallel processing on a high-performance computing cluster.
    Munro I; García E; Yan M; Guldbrand S; Kumar S; Kwakwa K; Dunsby C; Neil MAA; French PMW
    J Microsc; 2019 Feb; 273(2):148-160. PubMed ID: 30508256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.
    Villa CE; Caccia M; Sironi L; D'Alfonso L; Collini M; Rivolta I; Miserocchi G; Gorletta T; Zanoni I; Granucci F; Chirico G
    PLoS One; 2010 Aug; 5(8):e12216. PubMed ID: 20808918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence imaging of single Kinesin motors on immobilized microtubules.
    Korten T; Nitzsche B; Gell C; Ruhnow F; Leduc C; Diez S
    Methods Mol Biol; 2011; 783():121-37. PubMed ID: 21909886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single-Molecule RNA Mobility Assay to Identify Proteins that Link RNAs to Molecular Motors.
    Bhaskar V; Jia M; Chao JA
    Methods Mol Biol; 2020; 2166():269-282. PubMed ID: 32710415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinesin motor density and dynamics in gliding microtubule motility.
    VanDelinder V; Imam ZI; Bachand G
    Sci Rep; 2019 May; 9(1):7206. PubMed ID: 31076627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and nano-manipulation of single biomolecules.
    Funatsu T; Harada Y; Higuchi H; Tokunaga M; Saito K; Ishii Y; Vale RD; Yanagida T
    Biophys Chem; 1997 Oct; 68(1-3):63-72. PubMed ID: 9468610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining particle positions using circular symmetry.
    Rodriguez A; Zhang H; Wiklund K; Brodin T; Klaminder J; Andersson P; Andersson M
    PLoS One; 2017; 12(4):e0175015. PubMed ID: 28403228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.