BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 33788619)

  • 1. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field.
    Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C
    J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.
    Manoli Z; Parazzini M; Ravazzani P; Samaras T
    Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.
    Galletta EE; Cancelli A; Cottone C; Simonelli I; Tecchio F; Bikson M; Marangolo P
    Brain Stimul; 2015; 8(6):1108-15. PubMed ID: 26198364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost of focality in TDCS: Interindividual variability in electric fields.
    Mikkonen M; Laakso I; Tanaka S; Hirata A
    Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation.
    Callejón-Leblic MA; Miranda PC
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33647895
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of transcranial stimulating electrode montages over the head for lower-extremity transcranial motor evoked potential monitoring.
    Tomio R; Akiyama T; Ohira T; Yoshida K
    J Neurosurg; 2017 Jun; 126(6):1951-1958. PubMed ID: 27662531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study.
    Chen L; Zou X; Tang R; Ke A; He J
    J Neural Eng; 2019 Aug; 16(5):056012. PubMed ID: 31195379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
    Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A
    Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
    Datta A; Bansal V; Diaz J; Patel J; Reato D; Bikson M
    Brain Stimul; 2009 Oct; 2(4):201-7, 207.e1. PubMed ID: 20648973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches.
    Molero-Chamizo A; Nitsche MA; Gutiérrez Lérida C; Salas Sánchez Á; Martín Riquel R; Andújar Barroso RT; Alameda Bailén JR; García Palomeque JC; Rivera-Urbina GN
    Biology (Basel); 2021 Nov; 10(12):. PubMed ID: 34943145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pursuit of DLPFC: Non-neuronavigated Methods to Target the Left Dorsolateral Pre-frontal Cortex With Symmetric Bicephalic Transcranial Direct Current Stimulation (tDCS).
    Seibt O; Brunoni AR; Huang Y; Bikson M
    Brain Stimul; 2015; 8(3):590-602. PubMed ID: 25862601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow.
    Datta A; Bikson M; Fregni F
    Neuroimage; 2010 Oct; 52(4):1268-78. PubMed ID: 20435146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Electrode Drift in Transcranial Direct Current Stimulation.
    Woods AJ; Bryant V; Sacchetti D; Gervits F; Hamilton R
    Brain Stimul; 2015; 8(3):515-9. PubMed ID: 25583653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical Excitability through Anodal Transcranial Direct Current Stimulation: a Computational Approach.
    Arora Y; Chowdhury SR
    J Med Syst; 2020 Jan; 44(2):48. PubMed ID: 31900599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution head model of transcranial direct current stimulation: A labeling analysis.
    Thomas C; Huang Y; Faria PC; Datta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6442-6445. PubMed ID: 31947317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models.
    Metwally MK; Cho YS; Park HJ; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5514-7. PubMed ID: 23367178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of montages and electric currents in tDCS.
    Khorrampanah M; Seyedarabi H; Daneshvar S; Farhoudi M
    Comput Biol Med; 2020 Oct; 125():103998. PubMed ID: 33039799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode montage-dependent intracranial variability in electric fields induced by cerebellar transcranial direct current stimulation.
    Klaus J; Schutter DJLG
    Sci Rep; 2021 Nov; 11(1):22183. PubMed ID: 34773062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.
    Sharma G; Roy Chowdhury S
    J Med Syst; 2018 Oct; 42(12):244. PubMed ID: 30374669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.