BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33788619)

  • 21. Transcranial direct current stimulation in obsessive-compulsive disorder: an update in electric field modeling and investigations for optimal electrode montage.
    da Silva RMF; Batistuzzo MC; Shavitt RG; Miguel EC; Stern E; Mezger E; Padberg F; D'Urso G; Brunoni AR
    Expert Rev Neurother; 2019 Oct; 19(10):1025-1035. PubMed ID: 31244347
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.
    Metwally MK; Han SM; Kim TS
    Med Biol Eng Comput; 2015 Oct; 53(10):1085-101. PubMed ID: 25940845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the importance of electrode parameters for shaping electric field patterns generated by tDCS.
    Saturnino GB; Antunes A; Thielscher A
    Neuroimage; 2015 Oct; 120():25-35. PubMed ID: 26142274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS.
    Faria P; Hallett M; Miranda PC
    J Neural Eng; 2011 Dec; 8(6):066017. PubMed ID: 22086257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interindividual differences in posterior fossa morphometry affect cerebellar tDCS-induced electric field strength.
    Maas RPPWM; Faber J; ; van de Warrenburg BPC; Schutter DJLG
    Clin Neurophysiol; 2023 Sep; 153():152-165. PubMed ID: 37499446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of the electric field during transcranial direct current stimulation.
    Opitz A; Paulus W; Will S; Antunes A; Thielscher A
    Neuroimage; 2015 Apr; 109():140-50. PubMed ID: 25613437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling.
    Im CH; Park JH; Shim M; Chang WH; Kim YH
    Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
    Santos L; Martinho M; Salvador R; Wenger C; Fernandes SR; Ripolles O; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1778-1781. PubMed ID: 28268672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How electrode montage affects transcranial direct current stimulation of the human motor cortex.
    Salvador R; Wenger C; Nitsche MA; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6924-7. PubMed ID: 26737885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models.
    Caulfield KA; George MS
    Sci Rep; 2022 Nov; 12(1):20116. PubMed ID: 36418438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS.
    Shahid S; Wen P; Ahfock T
    Bioelectromagnetics; 2014 Jan; 35(1):41-57. PubMed ID: 24122951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of parameters selection with transcranial direct current stimulation based on real head model].
    Wang H; Yu H; Wang C; Xu G; Guo L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):638-646. PubMed ID: 34459162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS.
    Edwards D; Cortes M; Datta A; Minhas P; Wassermann EM; Bikson M
    Neuroimage; 2013 Jul; 74():266-75. PubMed ID: 23370061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions.
    Indahlastari A; Chauhan M; Schwartz B; Sadleir RJ
    J Neural Eng; 2016 Dec; 13(6):066006. PubMed ID: 27705955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.
    Laakso I; Tanaka S; Mikkonen M; Koyama S; Sadato N; Hirata A
    Neuroimage; 2016 Aug; 137():140-151. PubMed ID: 27188218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.
    Lee C; Jung YJ; Lee SJ; Im CH
    J Neurosci Methods; 2017 Feb; 277():56-62. PubMed ID: 27989592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging of current flow in the human head during transcranial electrical therapy.
    Kasinadhuni AK; Indahlastari A; Chauhan M; Schär M; Mareci TH; Sadleir RJ
    Brain Stimul; 2017; 10(4):764-772. PubMed ID: 28457836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.
    Datta A; Dmochowski JP; Guleyupoglu B; Bikson M; Fregni F
    Neuroimage; 2013 Jan; 65():280-7. PubMed ID: 23041337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.