These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33788943)

  • 21. The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity.
    Hossain ST; Malhotra A; Deutscher MP
    J Biol Chem; 2015 Jun; 290(25):15697-15706. PubMed ID: 25931119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization.
    Amblar M; Barbas A; Gomez-Puertas P; Arraiano CM
    RNA; 2007 Mar; 13(3):317-27. PubMed ID: 17242308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae.
    Domingues S; Matos RG; Reis FP; Fialho AM; Barbas A; Arraiano CM
    Biochemistry; 2009 Dec; 48(50):11848-57. PubMed ID: 19863111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain.
    Vincent HA; Deutscher MP
    J Mol Biol; 2009 Apr; 387(3):570-83. PubMed ID: 19361424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insights into nanoRNA degradation by human Rexo2.
    Chu LY; Agrawal S; Chen YP; Yang WZ; Yuan HS
    RNA; 2019 Jun; 25(6):737-746. PubMed ID: 30926754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family.
    Zheng X; Feng N; Li D; Dong X; Li J
    Mol Microbiol; 2017 Nov; 106(3):351-366. PubMed ID: 28795788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
    Hsiao YY; Yang CC; Lin CL; Lin JL; Duh Y; Yuan HS
    Nat Chem Biol; 2011 Apr; 7(4):236-43. PubMed ID: 21317904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of Escherichia coli Ribonuclease R Cytosine-Sensitive Activity by Single Amino Acid Substitution.
    Abula A; Yang T; Zhang Y; Li T; Ji X
    Mol Biotechnol; 2023 Jan; 65(1):108-115. PubMed ID: 35838865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA.
    Dos Santos RF; Quendera AP; Boavida S; Seixas AF; Arraiano CM; Andrade JM
    Prog Mol Biol Transl Sci; 2018; 159():101-155. PubMed ID: 30340785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J.
    Zhao Y; Lu M; Zhang H; Hu J; Zhou C; Xu Q; Ul Hussain Shah AM; Xu H; Wang L; Hua Y
    Nucleic Acids Res; 2015 Jun; 43(11):5550-9. PubMed ID: 25940620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression, purification, and properties of Escherichia coli ribonuclease II.
    Coburn GA; Mackie GA
    J Biol Chem; 1996 Jan; 271(2):1048-53. PubMed ID: 8557629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective detection of ribose-methylated nucleotides in RNA by a mass spectrometry-based method.
    Qiu F; McCloskey JA
    Nucleic Acids Res; 1999 Sep; 27(18):e20. PubMed ID: 10471750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist.
    Ogden KM; Hu L; Jha BK; Sankaran B; Weiss SR; Silverman RH; Patton JT; Prasad BV
    J Virol; 2015 Jul; 89(13):6633-45. PubMed ID: 25878106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties.
    Matos RG; Fialho AM; Giloh M; Schuster G; Arraiano CM
    PLoS One; 2012; 7(3):e32690. PubMed ID: 22403697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective 2'-hydroxyl acylation analyzed by protection from exoribonuclease.
    Steen KA; Malhotra A; Weeks KM
    J Am Chem Soc; 2010 Jul; 132(29):9940-3. PubMed ID: 20597503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The only exoribonuclease present in Haloferax volcanii has an unique response to temperature changes.
    Matos RG; López-Viñas E; Goméz-Puertas P; Arraiano CM
    Biochim Biophys Acta; 2012 Oct; 1820(10):1543-52. PubMed ID: 22705677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of action of RNase T. II. A structural and functional model of the enzyme.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50160-4. PubMed ID: 12364333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
    Hsiao YY; Duh Y; Chen YP; Wang YT; Yuan HS
    Nucleic Acids Res; 2012 Sep; 40(16):8144-54. PubMed ID: 22718982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.