These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33789065)

  • 1. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies.
    Kaur J; Mojumdar A
    Int J Neurosci; 2023 Mar; 133(3):307-321. PubMed ID: 33789065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple mechanisms of curcumin targeting spinal cord injury.
    Gu G; Ren J; Zhu B; Shi Z; Feng S; Wei Z
    Biomed Pharmacother; 2023 Mar; 159():114224. PubMed ID: 36641925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages.
    Chen X; Cui J; Zhai X; Zhang J; Gu Z; Zhi X; Weng W; Pan P; Cao L; Ji F; Wang Z; Su J
    Cell Physiol Biochem; 2018; 47(1):176-190. PubMed ID: 29763919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological approaches to repair the injured spinal cord.
    Baptiste DC; Fehlings MG
    J Neurotrauma; 2006; 23(3-4):318-34. PubMed ID: 16629619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury.
    Khaing ZZ; Chen JY; Safarians G; Ezubeik S; Pedroncelli N; Duquette RD; Prasse T; Seidlits SK
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects.
    Erşahın M; Toklu HZ; Erzık C; Akakin D; Tetık S; Sener G; Yeğen BC
    Turk Neurosurg; 2011; 21(4):599-605. PubMed ID: 22194122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunotherapy strategies for spinal cord injury.
    Wang YT; Lu XM; Chen KT; Shu YH; Qiu CH
    Curr Pharm Biotechnol; 2015; 16(6):492-505. PubMed ID: 25860061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aescin reduces oxidative stress and provides neuroprotection in experimental traumatic spinal cord injury.
    Cheng P; Kuang F; Ju G
    Free Radic Biol Med; 2016 Oct; 99():405-417. PubMed ID: 27596954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury.
    Kong X; Gao J
    J Cell Mol Med; 2017 May; 21(5):941-954. PubMed ID: 27957787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotection of spinal neurons against blunt trauma and ischemia.
    Reyes O; Sosa I; Kuffler DP
    P R Health Sci J; 2003 Sep; 22(3):277-86. PubMed ID: 14619455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells.
    Li D; Tian H; Li X; Mao L; Zhao X; Lin J; Lin S; Xu C; Liu Y; Guo Y; Mei X
    Life Sci; 2020 Mar; 245():117351. PubMed ID: 31981629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.
    Ozturk AM; Sozbilen MC; Sevgili E; Dagci T; Özyalcin H; Armagan G
    Injury; 2018 Jun; 49(6):1038-1045. PubMed ID: 29602490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review).
    Zhang Y; Al Mamun A; Yuan Y; Lu Q; Xiong J; Yang S; Wu C; Wu Y; Wang J
    Mol Med Rep; 2021 Jun; 23(6):. PubMed ID: 33846780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanowired drug delivery to enhance neuroprotection in spinal cord injury.
    Tian ZR; Sharma A; Nozari A; Subramaniam R; Lundstedt T; Sharma HS
    CNS Neurol Disord Drug Targets; 2012 Feb; 11(1):86-95. PubMed ID: 22385571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury.
    Ma L; Mu Y; Zhang Z; Sun Q
    Restor Neurol Neurosci; 2018; 36(5):659-668. PubMed ID: 30040768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats.
    Toklu HZ; Hakan T; Celik H; Biber N; Erzik C; Ogunc AV; Akakin D; Cikler E; Cetinel S; Ersahin M; Sener G
    J Spinal Cord Med; 2010; 33(4):401-9. PubMed ID: 21061900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective Effects of C-terminal Domain of Tetanus Toxin on Rat Brain Against Motorneuron Damages After Experimental Spinal Cord Injury.
    Sozbilen MC; Ozturk M; Kaftan G; Dagci T; Ozyalcin H; Armagan G
    Spine (Phila Pa 1976); 2018 Mar; 43(6):E327-E333. PubMed ID: 28767631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response.
    Hou Y; Luan J; Huang T; Deng T; Li X; Xiao Z; Zhan J; Luo D; Hou Y; Xu L; Lin D
    J Neuroinflammation; 2021 Sep; 18(1):216. PubMed ID: 34544428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From basics to clinical: a comprehensive review on spinal cord injury.
    Silva NA; Sousa N; Reis RL; Salgado AJ
    Prog Neurobiol; 2014 Mar; 114():25-57. PubMed ID: 24269804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats.
    Yune TY; Lee JY; Cui CM; Kim HC; Oh TH
    J Neurochem; 2009 Aug; 110(4):1276-87. PubMed ID: 19519665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.