These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33789072)

  • 1. Human Primary Airway Basal Cells Display a Continuum of Molecular Phases from Health to Disease in Chronic Obstructive Pulmonary Disease.
    Wijk SC; Prabhala P; Michaliková B; Sommarin M; Doyle A; Lang S; Kanzenbach K; Tufvesson E; Lindstedt S; Leigh ND; Karlsson G; Bjermer L; Westergren-Thorsson G; Magnusson M
    Am J Respir Cell Mol Biol; 2021 Jul; 65(1):103-113. PubMed ID: 33789072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease.
    Carlier FM; Dupasquier S; Ambroise J; Detry B; Lecocq M; Biétry-Claudet C; Boukala Y; Gala JL; Bouzin C; Verleden SE; Hoton D; Gohy S; Bearzatto B; Pilette C
    EBioMedicine; 2020 Nov; 61():103034. PubMed ID: 33045470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells.
    Wohnhaas CT; Gindele JA; Kiechle T; Shen Y; Leparc GG; Stierstorfer B; Stahl H; Gantner F; Viollet C; Schymeinsky J; Baum P
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease.
    Heijink IH; de Bruin HG; van den Berge M; Bennink LJ; Brandenburg SM; Gosens R; van Oosterhout AJ; Postma DS
    Thorax; 2013 Aug; 68(8):709-16. PubMed ID: 23370438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells.
    Hedström U; Hallgren O; Öberg L; DeMicco A; Vaarala O; Westergren-Thorsson G; Zhou X
    Sci Rep; 2018 Feb; 8(1):3502. PubMed ID: 29472603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD.
    Morrow JD; Chase RP; Parker MM; Glass K; Seo M; Divo M; Owen CA; Castaldi P; DeMeo DL; Silverman EK; Hersh CP
    Respir Res; 2019 Apr; 20(1):65. PubMed ID: 30940135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis.
    Sarker RSJ; Conlon TM; Morrone C; Srivastava B; Konyalilar N; Verleden SE; Bayram H; Fehrenbach H; Yildirim AÖ
    Am J Physiol Lung Cell Mol Physiol; 2019 Nov; 317(5):L602-L614. PubMed ID: 31461302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease.
    Liu Q; Li H; Wang Q; Zhang Y; Wang W; Dou S; Xiao W
    Respir Res; 2016 Nov; 17(1):159. PubMed ID: 27887617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized management of chronic obstructive pulmonary disease via transcriptomic profiling of the airway and lung.
    Steiling K; Lenburg ME; Spira A
    Ann Am Thorac Soc; 2013 Dec; 10 Suppl(Suppl):S190-6. PubMed ID: 24313772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells.
    Ali MN; Mori M; Mertens TCJ; Siddhuraj P; Erjefält JS; Önnerfjord P; Hiemstra PS; Egesten A
    Sci Rep; 2019 Oct; 9(1):15566. PubMed ID: 31664154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.
    Zhang H; Kho AT; Wu Q; Halayko AJ; Limbert Rempel K; Chase RP; Sweezey NB; Weiss ST; Kaplan F
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27597766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COPD basal cells are primed towards secretory to multiciliated cell imbalance driving increased resilience to environmental stressors.
    Stoleriu MG; Ansari M; Strunz M; Schamberger A; Heydarian M; Ding Y; Voss C; Schneider JJ; Gerckens M; Burgstaller G; Castelblanco A; Kauke T; Fertmann J; Schneider C; Behr J; Lindner M; Stacher-Priehse E; Irmler M; Beckers J; Eickelberg O; Schubert B; Hauck SM; Schmid O; Hatz RA; Stoeger T; Schiller HB; Hilgendorff A
    Thorax; 2024 May; 79(6):524-537. PubMed ID: 38286613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.
    Jang JH; Chand HS; Bruse S; Doyle-Eisele M; Royer C; McDonald J; Qualls C; Klingelhutz AJ; Lin Y; Mallampalli R; Tesfaigzi Y; Nyunoya T
    COPD; 2017 Apr; 14(2):228-237. PubMed ID: 28026993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent exposure to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-liquid interface culture.
    Gindele JA; Kiechle T; Benediktus K; Birk G; Brendel M; Heinemann F; Wohnhaas CT; LeBlanc M; Zhang H; Strulovici-Barel Y; Crystal RG; Thomas MJ; Stierstorfer B; Quast K; Schymeinsky J
    Sci Rep; 2020 Apr; 10(1):6257. PubMed ID: 32277131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD.
    Belgacemi R; Luczka E; Ancel J; Diabasana Z; Perotin JM; Germain A; Lalun N; Birembaut P; Dubernard X; Mérol JC; Delepine G; Polette M; Deslée G; Dormoy V
    EBioMedicine; 2020 Jan; 51():102572. PubMed ID: 31877414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients.
    Nishioka M; Venkatesan N; Dessalle K; Mogas A; Kyoh S; Lin TY; Nair P; Baglole CJ; Eidelman DH; Ludwig MS; Hamid Q
    Respir Res; 2015 Jun; 16(1):72. PubMed ID: 26081431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage.
    He Q; Li P; Han L; Yang C; Jiang M; Wang Y; Han X; Cao Y; Liu X; Wu W
    Am J Physiol Lung Cell Mol Physiol; 2024 Jun; 326(6):L754-L769. PubMed ID: 38625125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease.
    Crystal RG
    Am J Respir Crit Care Med; 2014 Dec; 190(12):1355-62. PubMed ID: 25354273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease.
    Miller M; Cho JY; Pham A; Ramsdell J; Broide DH
    J Immunol; 2009 Jan; 182(1):684-91. PubMed ID: 19109202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cigarette smoke-induced epithelial expression of WNT-5B: implications for COPD.
    Heijink IH; de Bruin HG; Dennebos R; Jonker MR; Noordhoek JA; Brandsma CA; van den Berge M; Postma DS
    Eur Respir J; 2016 Aug; 48(2):504-15. PubMed ID: 27126693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.