These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33789660)

  • 1. Predicting unplanned medical visits among patients with diabetes: translation from machine learning to clinical implementation.
    Selya A; Anshutz D; Griese E; Weber TL; Hsu B; Ward C
    BMC Med Inform Decis Mak; 2021 Mar; 21(1):111. PubMed ID: 33789660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smoking is associated with a higher risk of unplanned medical visits among adult patients with diabetes, using retrospective electronic medical record data from 2014 to 2016.
    Selya A; Johnson EL; Weber TL; Russo J; Stansbury C; Anshutz D; Griese E; Hsu B
    BMC Health Serv Res; 2020 May; 20(1):383. PubMed ID: 32375742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictors of in-hospital length of stay among cardiac patients: A machine learning approach.
    Daghistani TA; Elshawi R; Sakr S; Ahmed AM; Al-Thwayee A; Al-Mallah MH
    Int J Cardiol; 2019 Aug; 288():140-147. PubMed ID: 30685103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive models for diabetes mellitus using machine learning techniques.
    Lai H; Huang H; Keshavjee K; Guergachi A; Gao X
    BMC Endocr Disord; 2019 Oct; 19(1):101. PubMed ID: 31615566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records.
    Dong Z; Wang Q; Ke Y; Zhang W; Hong Q; Liu C; Liu X; Yang J; Xi Y; Shi J; Zhang L; Zheng Y; Lv Q; Wang Y; Wu J; Sun X; Cai G; Qiao S; Yin C; Su S; Chen X
    J Transl Med; 2022 Mar; 20(1):143. PubMed ID: 35346252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model.
    Cahn A; Shoshan A; Sagiv T; Yesharim R; Goshen R; Shalev V; Raz I
    Diabetes Metab Res Rev; 2020 Feb; 36(2):e3252. PubMed ID: 31943669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying people at risk of developing type 2 diabetes: A comparison of predictive analytics techniques and predictor variables.
    Talaei-Khoei A; Wilson JM
    Int J Med Inform; 2018 Nov; 119():22-38. PubMed ID: 30342683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test.
    Abbas HT; Alic L; Erraguntla M; Ji JX; Abdul-Ghani M; Abbasi QH; Qaraqe MK
    PLoS One; 2019; 14(12):e0219636. PubMed ID: 31826018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction.
    Luo G
    Health Inf Sci Syst; 2016; 4():2. PubMed ID: 26958341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting hospitalization following psychiatric crisis care using machine learning.
    Blankers M; van der Post LFM; Dekker JJM
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):332. PubMed ID: 33302948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease.
    Wang C; Chen X; Du L; Zhan Q; Yang T; Fang Z
    Comput Methods Programs Biomed; 2020 May; 188():105267. PubMed ID: 31841787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of pulmonary pressure after Glenn shunts by computed tomography-based machine learning models.
    Huang L; Li J; Huang M; Zhuang J; Yuan H; Jia Q; Zeng D; Que L; Xi Y; Lin J; Dong Y
    Eur Radiol; 2020 Mar; 30(3):1369-1377. PubMed ID: 31705256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.