These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33789905)

  • 1. Observation of cavitation governing fracture in glasses.
    Shen LQ; Yu JH; Tang XC; Sun BA; Liu YH; Bai HY; Wang WH
    Sci Adv; 2021 Mar; 7(14):. PubMed ID: 33789905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses.
    Murali P; Guo TF; Zhang YW; Narasimhan R; Li Y; Gao HJ
    Phys Rev Lett; 2011 Nov; 107(21):215501. PubMed ID: 22181893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the toughness in metallic glasses depends on topological and chemical heterogeneity.
    An Q; Samwer K; Demetriou MD; Floyd MC; Duggins DO; Johnson WL; Goddard WA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7053-8. PubMed ID: 27307438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation-Induced Fracture Causes Nanocorrugations in Brittle Metallic Glasses.
    Singh I; Narasimhan R; Ramamurty U
    Phys Rev Lett; 2016 Jul; 117(4):044302. PubMed ID: 27494475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack nucleation criterion and its application to impact indentation in glasses.
    Luo J; Vargheese KD; Tandia A; Hu G; Mauro JC
    Sci Rep; 2016 Apr; 6():23720. PubMed ID: 27079431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses.
    Wang G; Zhao DQ; Bai HY; Pan MX; Xia AL; Han BS; Xi XK; Wu Y; Wang WH
    Phys Rev Lett; 2007 Jun; 98(23):235501. PubMed ID: 17677915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crack propagation through phase-separated glasses: effect of the characteristic size of disorder.
    Dalmas D; Lelarge A; Vandembroucq D
    Phys Rev Lett; 2008 Dec; 101(25):255501. PubMed ID: 19113722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal.
    Lu Y; Chen Y; Zeng Y; Zhang Y; Kong D; Li X; Zhu T; Li X; Mao S; Zhang Z; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5540. PubMed ID: 37684248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and modeling of breaking-induced spontaneous nanoscale periodic stripes in metallic glasses.
    Xia XX; Wang WH
    Small; 2012 Apr; 8(8):1197-203, 1125. PubMed ID: 22334575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitions from oscillatory to smooth fracture propagation in brittle metallic glasses.
    Braiman Y; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):065101. PubMed ID: 18643323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale.
    Huang L; Zheng F; Deng Q; Thi QH; Wong LW; Cai Y; Wang N; Lee CS; Lau SP; Chhowalla M; Li J; Ly TH; Zhao J
    Phys Rev Lett; 2020 Dec; 125(24):246102. PubMed ID: 33412019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brittle-to-Ductile Transition in Metallic Glass Nanowires.
    Şopu D; Foroughi A; Stoica M; Eckert J
    Nano Lett; 2016 Jul; 16(7):4467-71. PubMed ID: 27248329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension.
    Huang Q; Alvarez NJ; Shabbir A; Hassager O
    Phys Rev Lett; 2016 Aug; 117(8):087801. PubMed ID: 27588883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.
    Wang F; Tzanakis I; Eskin D; Mi J; Connolley T
    Ultrason Sonochem; 2017 Nov; 39():66-76. PubMed ID: 28732991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically Sharp Crack Tips in Monolayer MoS
    Wang S; Qin Z; Jung GS; Martin-Martinez FJ; Zhang K; Buehler MJ; Warner JH
    ACS Nano; 2016 Nov; 10(11):9831-9839. PubMed ID: 27657175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.
    Chaudhri MM
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aftershock sequences and seismic-like organization of acoustic events produced by a single propagating crack.
    Barés J; Dubois A; Hattali L; Dalmas D; Bonamy D
    Nat Commun; 2018 Mar; 9(1):1253. PubMed ID: 29593272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic Fracture and Toughening of a Brittle Layer Bonded to a Hydrogel.
    Lucantonio A; Noselli G; Trepat X; DeSimone A; Arroyo M
    Phys Rev Lett; 2015 Oct; 115(18):188105. PubMed ID: 26565503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-strength and high-ductility nanostructured and amorphous metallic materials.
    Kou H; Lu J; Li Y
    Adv Mater; 2014 Aug; 26(31):5518-24. PubMed ID: 24975572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical fracture instabilities due to local hyperelasticity at crack tips.
    Buehler MJ; Gao H
    Nature; 2006 Jan; 439(7074):307-10. PubMed ID: 16421566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.