These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 3378998)
41. Changes in exercise heart rate in lowlanders after prolonged stay at high altitude (4000 m). Gupta JS; Dua GL; Srinivasulu N; Malhortra MS Aviat Space Environ Med; 1975 Jul; 46(7):907-10. PubMed ID: 1156301 [TBL] [Abstract][Full Text] [Related]
42. Internal carotid arterial flow velocity during exercise in Tibetan and Han residents of Lhasa (3,658 m). Huang SY; Sun S; Droma T; Zhuang J; Tao JX; McCullough RG; McCullough RE; Micco AJ; Reeves JT; Moore LG J Appl Physiol (1985); 1992 Dec; 73(6):2638-42. PubMed ID: 1490981 [TBL] [Abstract][Full Text] [Related]
43. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity. Simonson TS; Wei G; Wagner HE; Wuren T; Qin G; Yan M; Wagner PD; Ge RL J Physiol; 2015 Jul; 593(14):3207-18. PubMed ID: 25988759 [TBL] [Abstract][Full Text] [Related]
44. High twin resemblance for sensitivity to hypoxia. Masschelein E; Van Thienen R; Thomis M; Hespel P Med Sci Sports Exerc; 2015 Jan; 47(1):74-81. PubMed ID: 24870565 [TBL] [Abstract][Full Text] [Related]
45. Hemodynamic, Hematological, and Hormonal Responses to Submaximal Exercise in Normobaric Hypoxia in Pubescent Girls. Park HY; Nam SS; Tanaka H; Lee DJ Pediatr Exerc Sci; 2016 Aug; 28(3):417-22. PubMed ID: 27045322 [TBL] [Abstract][Full Text] [Related]
46. Effects of lung ventilation-perfusion and muscle metabolism-perfusion heterogeneities on maximal O2 transport and utilization. Cano I; Roca J; Wagner PD J Physiol; 2015 Apr; 593(8):1841-56. PubMed ID: 25640017 [TBL] [Abstract][Full Text] [Related]
47. Heightened Exercise-Induced Oxidative Stress at Simulated Moderate Level Altitude vs. Sea Level in Trained Cyclists. J Wadley A; S Svendsen I; Gleeson M Int J Sport Nutr Exerc Metab; 2017 Apr; 27(2):97-104. PubMed ID: 27710149 [TBL] [Abstract][Full Text] [Related]
48. Influence of age and physical activity on central hemodynamics and lung function in active adults. Kanstrup IL; Ekblom B J Appl Physiol Respir Environ Exerc Physiol; 1978 Nov; 45(5):709-17. PubMed ID: 730567 [TBL] [Abstract][Full Text] [Related]
49. Pulmonary gas exchange in humans during exercise at sea level. Hammond MD; Gale GE; Kapitan KS; Ries A; Wagner PD J Appl Physiol (1985); 1986 May; 60(5):1590-8. PubMed ID: 3710978 [TBL] [Abstract][Full Text] [Related]
50. Exercise performance in hypoxia after novel erythropoiesis stimulating protein treatment. Lundby C; Damsgaard R Scand J Med Sci Sports; 2006 Feb; 16(1):35-40. PubMed ID: 16430679 [TBL] [Abstract][Full Text] [Related]
51. Effect of reduced hemoglobin concentration on leg oxygen uptake during maximal exercise in humans. Schaffartzik W; Barton ED; Poole DC; Tsukimoto K; Hogan MC; Bebout DE; Wagner PD J Appl Physiol (1985); 1993 Aug; 75(2):491-8; discussion 489-90. PubMed ID: 8226444 [TBL] [Abstract][Full Text] [Related]
52. Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. Jones JH; Longworth KE; Lindholm A; Conley KE; Karas RH; Kayar SR; Taylor CR J Appl Physiol (1985); 1989 Aug; 67(2):862-70. PubMed ID: 2793686 [TBL] [Abstract][Full Text] [Related]
53. Hemoconcentration During Maximum Exercise in Miners with Chronic Intermittent Exposure to Hypobaric Hypoxia (3800 m). Moraga FA; Osorio J; Calderón-Jofré R; Pedreros A High Alt Med Biol; 2018 Mar; 19(1):15-20. PubMed ID: 29035586 [TBL] [Abstract][Full Text] [Related]
54. Non-linear relationships between central cardiovascular variables and VO2 during incremental cycling exercise in endurance-trained individuals. Vella CA; Robergs RA J Sports Med Phys Fitness; 2005 Dec; 45(4):452-9. PubMed ID: 16446675 [TBL] [Abstract][Full Text] [Related]
55. Effects of erythrocyte infusion on VO2max at high altitude. Young AJ; Sawka MN; Muza SR; Boushel R; Lyons T; Rock PB; Freund BJ; Waters R; Cymerman A; Pandolf KB; Valeri CR J Appl Physiol (1985); 1996 Jul; 81(1):252-9. PubMed ID: 8828672 [TBL] [Abstract][Full Text] [Related]
56. Effects of acute hypoxia and CO2 inhalation on systemic and peripheral oxygen uptake and circulatory responses during moderate exercise. Schibye B; Klausen K; Trap-Jensen J; Lund JO; Hartling O Eur J Appl Physiol Occup Physiol; 1988; 57(5):519-25. PubMed ID: 3135188 [TBL] [Abstract][Full Text] [Related]
57. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response. Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947 [TBL] [Abstract][Full Text] [Related]
58. Role of the autonomic nervous system in the reduced maximal cardiac output at altitude. Bogaard HJ; Hopkins SR; Yamaya Y; Niizeki K; Ziegler MG; Wagner PD J Appl Physiol (1985); 2002 Jul; 93(1):271-9. PubMed ID: 12070214 [TBL] [Abstract][Full Text] [Related]
59. Optimal hemoglobin concentration and high altitude: a theoretical approach for Andean men at rest. Villafuerte FC; Cárdenas R; Monge-C C J Appl Physiol (1985); 2004 May; 96(5):1581-8. PubMed ID: 14672972 [TBL] [Abstract][Full Text] [Related]
60. Operation Everest II: preservation of cardiac function at extreme altitude. Reeves JT; Groves BM; Sutton JR; Wagner PD; Cymerman A; Malconian MK; Rock PB; Young PM; Houston CS J Appl Physiol (1985); 1987 Aug; 63(2):531-9. PubMed ID: 3654411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]