These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. Kalivoda KA; Steenbergen SM; Vimr ER; Plumbridge J J Bacteriol; 2003 Aug; 185(16):4806-15. PubMed ID: 12897000 [TBL] [Abstract][Full Text] [Related]
3. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism. Horne CR; Kind L; Davies JS; Dobson RCJ Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432 [TBL] [Abstract][Full Text] [Related]
4. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR. Kalivoda KA; Steenbergen SM; Vimr ER J Bacteriol; 2013 Oct; 195(20):4689-701. PubMed ID: 23935044 [TBL] [Abstract][Full Text] [Related]
5. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
6. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR. Hwang J; Kim BS; Jang SY; Lim JG; You DJ; Jung HS; Oh TK; Lee JO; Choi SH; Kim MH Proc Natl Acad Sci U S A; 2013 Jul; 110(30):E2829-37. PubMed ID: 23832782 [TBL] [Abstract][Full Text] [Related]
8. A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003. Egan M; O'Connell Motherway M; van Sinderen D FEMS Microbiol Lett; 2015 Feb; 362(4):. PubMed ID: 25688064 [TBL] [Abstract][Full Text] [Related]
9. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Sohanpal BK; El-Labany S; Lahooti M; Plumbridge JA; Blomfield IC Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16322-7. PubMed ID: 15534208 [TBL] [Abstract][Full Text] [Related]
10. Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Sohanpal BK; Friar S; Roobol J; Plumbridge JA; Blomfield IC Mol Microbiol; 2007 Feb; 63(4):1223-36. PubMed ID: 17238917 [TBL] [Abstract][Full Text] [Related]
11. A theoretical interpretation of the transient sialic acid toxicity of a nanR mutant of Escherichia coli. Chu D; Roobol J; Blomfield IC J Mol Biol; 2008 Jan; 375(3):875-89. PubMed ID: 18054045 [TBL] [Abstract][Full Text] [Related]
12. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. Tsunedomi R; Izu H; Kawai T; Matsushita K; Ferenci T; Yamada M J Bacteriol; 2003 Mar; 185(6):1783-95. PubMed ID: 12618441 [TBL] [Abstract][Full Text] [Related]
13. The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases. Kentache T; Thabault L; Peracchi A; Frédérick R; Bommer GT; Van Schaftingen E Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32542330 [TBL] [Abstract][Full Text] [Related]
14. NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens. Therit B; Cheung JK; Rood JI; Melville SB PLoS One; 2015; 10(7):e0133217. PubMed ID: 26197388 [TBL] [Abstract][Full Text] [Related]
15. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation. Lord DM; Uzgoren Baran A; Soo VW; Wood TK; Peti W; Page R Biochemistry; 2014 Nov; 53(46):7223-31. PubMed ID: 25376905 [TBL] [Abstract][Full Text] [Related]
16. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli. Garces F; Fernández FJ; Gómez AM; Pérez-Luque R; Campos E; Prohens R; Aguilar J; Baldomà L; Coll M; Badía J; Vega MC Biochemistry; 2008 Nov; 47(44):11424-33. PubMed ID: 18844374 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator. Jo I; Kim D; No T; Hong S; Ahn J; Ryu S; Ha NC Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3740-3745. PubMed ID: 30733296 [TBL] [Abstract][Full Text] [Related]
18. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
19. Allosteric control of transcription in GntR family of transcription regulators: A structural overview. Jain D IUBMB Life; 2015 Jul; 67(7):556-63. PubMed ID: 26172911 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Orth P; Schnappinger D; Hillen W; Saenger W; Hinrichs W Nat Struct Biol; 2000 Mar; 7(3):215-9. PubMed ID: 10700280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]