These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33790293)

  • 1. Long-range optofluidic control with plasmon heating.
    Ciraulo B; Garcia-Guirado J; de Miguel I; Ortega Arroyo J; Quidant R
    Nat Commun; 2021 Mar; 12(1):2001. PubMed ID: 33790293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface.
    Yang S; Ndukaife JC
    Light Sci Appl; 2023 Jul; 12(1):188. PubMed ID: 37507389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic Particle Manipulation Platform with Nanomembrane.
    Walker ZJ; Wells T; Belliston E; Romney S; Walker SB; Sampad MJN; Saiduzzaman SM; Losakul R; Schmidt H; Hawkins AR
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lensfree optofluidic microscopy and tomography.
    Bishara W; Isikman SO; Ozcan A
    Ann Biomed Eng; 2012 Feb; 40(2):251-62. PubMed ID: 21887590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-optofluidics: achieving dynamic control on-chip.
    Soltani M; Inman JT; Lipson M; Wang MD
    Opt Express; 2012 Sep; 20(20):22314-26. PubMed ID: 23037380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator.
    Zhang W; Li H; Zou Y; Zhao P; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of Nano- and Microparticle Flows Using Thermophoresis in Branched Microfluidic Channels.
    Tsuji T; Matsumoto Y; Kugimiya R; Doi K; Kawano S
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoplasmonics: quantifying plasmonic heating in single nanowires.
    Herzog JB; Knight MW; Natelson D
    Nano Lett; 2014 Feb; 14(2):499-503. PubMed ID: 24382140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip.
    Kong Y; Dai H; He X; Zheng Y; Chen X
    Opt Lett; 2018 Sep; 43(18):4461-4464. PubMed ID: 30211890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching between laser-induced thermophoresis and thermal convection of liquid suspension in a microgap with variable dimension.
    Tsuji T; Taguchi S; Takamatsu H
    Electrophoresis; 2021 Nov; 42(21-22):2401-2409. PubMed ID: 34269479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic bioanalysis: fundamentals and applications.
    Ozcelik D; Cai H; Leake KD; Hawkins AR; Schmidt H
    Nanophotonics; 2017 Jul; 6(4):647-661. PubMed ID: 29201591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide.
    Bianco V; Mandracchia B; Marchesano V; Pagliarulo V; Olivieri F; Coppola S; Paturzo M; Ferraro P
    Light Sci Appl; 2017 Sep; 6(9):e17055. PubMed ID: 30167297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically addressable single-use microfluidic valves by laser printer lithography.
    Garcia-Cordero JL; Kurzbuch D; Benito-Lopez F; Diamond D; Lee LP; Ricco AJ
    Lab Chip; 2010 Oct; 10(20):2680-7. PubMed ID: 20740236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
    Baigl D
    Lab Chip; 2012 Oct; 12(19):3637-53. PubMed ID: 22864577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.