BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33790358)

  • 1. A novel proteomics approach to epigenetic profiling of circulating nucleosomes.
    Van den Ackerveken P; Lobbens A; Turatsinze JV; Solis-Mezarino V; Völker-Albert M; Imhof A; Herzog M
    Sci Rep; 2021 Mar; 11(1):7256. PubMed ID: 33790358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer.
    Gezer U; Yörüker EE; Keskin M; Kulle CB; Dharuman Y; Holdenrieder S
    Int J Mol Sci; 2015 Dec; 16(12):29654-62. PubMed ID: 26690425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational histone modifications in circulating nucleosomes as new biomarkers in colorectal cancer.
    Gezer U; Holdenrieder S
    In Vivo; 2014; 28(3):287-92. PubMed ID: 24815828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic profiles of elevated cell free circulating H3.1 nucleosomes as potential biomarkers for non-Hodgkin lymphoma.
    Van den Ackerveken P; Lobbens A; Pamart D; Kotronoulas A; Rommelaere G; Eccleston M; Herzog M
    Sci Rep; 2023 Sep; 13(1):16335. PubMed ID: 37770512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities.
    Zhang K; Li L; Zhu M; Wang G; Xie J; Zhao Y; Fan E; Xu L; Li E
    J Proteomics; 2015 Jan; 112():180-9. PubMed ID: 25234497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinations of histone post-translational modifications.
    Taylor BC; Young NL
    Biochem J; 2021 Feb; 478(3):511-532. PubMed ID: 33567070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-specific histone methylation is detectable on circulating nucleosomes in plasma.
    Deligezer U; Akisik EE; Erten N; Dalay N
    Clin Chem; 2008 Jul; 54(7):1125-31. PubMed ID: 18487283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of nucleosome acetylation and other histone posttranslational modifications using microscale NU-ELISA.
    Dai B; Giardina C; Rasmussen TP
    Methods Mol Biol; 2013; 981():167-76. PubMed ID: 23381861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K4 and H3K36 Methylation Independently Recruit the NuA3 Histone Acetyltransferase in
    Martin BJ; McBurney KL; Maltby VE; Jensen KN; Brind'Amour J; Howe LJ
    Genetics; 2017 Mar; 205(3):1113-1123. PubMed ID: 28108585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone H3 lysine 27 acetylation is altered in colon cancer.
    Karczmarski J; Rubel T; Paziewska A; Mikula M; Bujko M; Kober P; Dadlez M; Ostrowski J
    Clin Proteomics; 2014; 11(1):24. PubMed ID: 24994966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers.
    Zhu G; Jin L; Sun W; Wang S; Liu N
    Biochim Biophys Acta Rev Cancer; 2022 Jul; 1877(4):188735. PubMed ID: 35577141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity.
    Kapoor-Vazirani P; Kagey JD; Powell DR; Vertino PM
    Cancer Res; 2008 Aug; 68(16):6810-21. PubMed ID: 18701507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H4 proteoforms and post-translational modifications in the Mus musculus brain with quantitative comparison of ages and brain regions.
    Taylor BC; Young NL
    Anal Bioanal Chem; 2023 Apr; 415(9):1627-1639. PubMed ID: 36754872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of post-translational modifications of histone H3 variants during the cell cycle.
    Chen J; Hu Y; Yu Y; Zhang L; Yang P; Jin H
    Anal Chim Acta; 2019 Nov; 1080():116-126. PubMed ID: 31409460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics reveals that the specific methyltransferases Txr1p and Ezl2p differentially affect the mono-, di- and trimethylation states of histone H3 lysine 27 (H3K27).
    Zhang C; Molascon AJ; Gao S; Liu Y; Andrews PC
    Mol Cell Proteomics; 2013 Jun; 12(6):1678-88. PubMed ID: 23150054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity.
    Lau PN; Cheung P
    Nucleic Acids Res; 2013 Feb; 41(3):e49. PubMed ID: 23258705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns.
    Tvardovskiy A; Wrzesinski K; Sidoli S; Fey SJ; Rogowska-Wrzesinska A; Jensen ON
    Mol Cell Proteomics; 2015 Dec; 14(12):3142-53. PubMed ID: 26424599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.
    Ng MK; Cheung P
    Biochem Cell Biol; 2016 Feb; 94(1):33-42. PubMed ID: 26197985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells.
    Dai B; Rasmussen TP
    Stem Cells; 2007 Oct; 25(10):2567-74. PubMed ID: 17641388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.