BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 3379055)

  • 21. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum.
    Zorzato F; Fujii J; Otsu K; Phillips M; Green NM; Lai FA; Meissner G; MacLennan DH
    J Biol Chem; 1990 Feb; 265(4):2244-56. PubMed ID: 2298749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cDNA cloning and characterization of human cardiac junctin.
    Lim KY; Hong CS; Kim DH
    Gene; 2000 Sep; 255(1):35-42. PubMed ID: 10974562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction.
    Kobayashi YM; Alseikhan BA; Jones LR
    J Biol Chem; 2000 Jun; 275(23):17639-46. PubMed ID: 10748065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural alterations in cardiac calcium release units resulting from overexpression of junctin.
    Zhang L; Franzini-Armstrong C; Ramesh V; Jones LR
    J Mol Cell Cardiol; 2001 Feb; 33(2):233-47. PubMed ID: 11162129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of the genes encoding mouse cardiac and skeletal calsequestrins: expression pattern during embryogenesis.
    Park KW; Goo JH; Chung HS; Kim H; Kim DH; Park WJ
    Gene; 1998 Sep; 217(1-2):25-30. PubMed ID: 9795116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region.
    Ohnishi M; Reithmeier RA
    Biochemistry; 1987 Nov; 26(23):7458-65. PubMed ID: 3427087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frog cardiac calsequestrin. Identification, characterization, and subcellular distribution in two structurally distinct regions of peripheral sarcoplasmic reticulum in frog ventricular myocardium.
    McLeod AG; Shen AC; Campbell KP; Michalak M; Jorgensen AO
    Circ Res; 1991 Aug; 69(2):344-59. PubMed ID: 1860177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose.
    Cala SE; Jones LR
    J Biol Chem; 1983 Oct; 258(19):11932-6. PubMed ID: 6619149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing.
    Bucher EA; de la Brousse FC; Emerson CP
    J Biol Chem; 1989 Jul; 264(21):12482-91. PubMed ID: 2745456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.
    He Z; Dunker AK; Wesson CR; Trumble WR
    J Biol Chem; 1993 Nov; 268(33):24635-41. PubMed ID: 8227022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle.
    Yamaguchi N; Kasai M
    Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):541-7. PubMed ID: 9794793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles.
    Leberer E; Seedorf U; Pette D
    Biochem J; 1986 Oct; 239(2):295-300. PubMed ID: 2880579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function of the N-terminal calcium-binding sites in cardiac/slow troponin C assessed in fast skeletal muscle fibers.
    Putkey JA; Liu W; Sweeney HL
    J Biol Chem; 1991 Aug; 266(23):14881-4. PubMed ID: 1869527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers.
    Biral D; Volpe P; Damiani E; Margreth A
    FEBS Lett; 1992 Mar; 299(2):175-8. PubMed ID: 1544490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning of chicken myosin-binding protein (MyBP) H (86-kDa protein) reveals extensive homology with MyBP-C (C-protein) with conserved immunoglobulin C2 and fibronectin type III motifs.
    Vaughan KT; Weber FE; Einheber S; Fischman DA
    J Biol Chem; 1993 Feb; 268(5):3670-6. PubMed ID: 7679114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane.
    Zhang L; Kelley J; Schmeisser G; Kobayashi YM; Jones LR
    J Biol Chem; 1997 Sep; 272(37):23389-97. PubMed ID: 9287354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assembly of the sarcoplasmic reticulum. Cell-free synthesis of te Ca2+ + Mg2+-adenosine triphosphatase and calsequestrin.
    Reithmeier RA; de Leon S; MacLennan DH
    J Biol Chem; 1980 Dec; 255(24):11839-46. PubMed ID: 6160154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cloning and characterization of mouse cardiac triadin isoforms.
    Hong CS; Ji JH; Kim JP; Jung DH; Kim DH
    Gene; 2001 Oct; 278(1-2):193-9. PubMed ID: 11707337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene.
    Fujii J; Willard HF; MacLennan DH
    Somat Cell Mol Genet; 1990 Mar; 16(2):185-9. PubMed ID: 2321095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and developmental expression of a chicken calsequestrin homolog.
    Choi ES; Clegg DO
    Dev Biol; 1990 Nov; 142(1):169-77. PubMed ID: 2227093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.